{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Tips & Trics for anypytools" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Stopping and restarting simulations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "AnyPyProcess caches the simulation results. This allows us to stop the simulations, and then later restart them again." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from anypytools import AnyPyProcess, macro_commands as mc\n", "app = AnyPyProcess(num_processes=2)\n", "\n", "macrolist = []\n", "for i in range(20):\n", " macro = [\n", " mc.Load(\"Knee.any\"),\n", " mc.RunOperation(\"Main.MyStudy.InverseDynamics\")\n", " ]\n", " macrolist.append(macro)\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "afe053c8db894e81ad6eea4ff8158e22", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[31mKeyboardInterrupt: User aborted\u001b[0m\n", "Completed: \u001b[1;36m15\u001b[0m, Not processed: \u001b[1;36m5\u001b[0m\n" ] }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "app.start_macro(macrolist); "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here we stopped the simulation using the Notebook interrupt button. Calling the `start_macro()` function again continues the processing and re-run any task that wasn't completed in the first run and any task that exited with errors. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "b649e3d64e8f44ee99d2c35c49055432",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Completed: \u001b[1;36m20\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "app.start_macro(macrolist);"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note: That changing the input arguments `start_macro` or re-instanciating the `app` object will erase the cache and re-run all processes. \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Including meta-information in the output"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `start_macro()` also returns extra meta info, but the information is not printed by the default `__repr__()` function."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "1772fcab5a4d4896bf088091c9f8f64f",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Completed: \u001b[1;36m1\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "{'Main.MyStudy.Output.MaxMuscleActivity': \n",
       "   array([0.00890538, 0.02510015, 0.06036529, 0.08096677, 0.08356285,\n",
       "          0.08356285, 0.08096678, 0.06036529, 0.02510015, 0.00890538])}"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from anypytools import AnyPyProcess\n",
    "from anypytools.macro_commands import Load, RunOperation, Export\n",
    "\n",
    "app = AnyPyProcess()\n",
    "macro = [\n",
    "    Load('Knee.any', defs={'N_STEP':10}), \n",
    "    RunOperation('Main.MyStudy.InverseDynamics'),\n",
    "    Export('Main.MyStudy.Output.MaxMuscleActivity'),\n",
    "]\n",
    "result = app.start_macro(macro)[0]\n",
    "result"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "But the information is there"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['load \"Knee.any\" -def N_STEP=\"10\"',\n",
       " 'operation Main.MyStudy.InverseDynamics\\nrun',\n",
       " 'print Main.MyStudy.Output.MaxMuscleActivity',\n",
       " 'exit']"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "result[\"task_macro\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can also see all task information by evaluating the result object as standard Python dictionary: "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'Main.MyStudy.Output.MaxMuscleActivity': array([0.00890538, 0.02510015, 0.06036529, 0.08096677, 0.08356285,\n",
       "        0.08356285, 0.08096678, 0.06036529, 0.02510015, 0.00890538]),\n",
       " 'task_macro_hash': '-47a62f48d7d7296e',\n",
       " 'task_id': 0,\n",
       " 'task_work_dir': 'D:\\\\repos\\\\AnyPyTools\\\\docs\\\\user-guide',\n",
       " 'task_name': 'docs-user-guide-0',\n",
       " 'task_processtime': 7.89442253112793,\n",
       " 'task_macro': ['load \"Knee.any\" -def N_STEP=\"10\"',\n",
       "  'operation Main.MyStudy.InverseDynamics\\nrun',\n",
       "  'print Main.MyStudy.Output.MaxMuscleActivity',\n",
       "  'exit'],\n",
       " 'task_logfile': ''}"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "dict(result)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Saving output to re-process at a later time"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The extra task meta info gives other posibilities. The results from running batch processing (i.e. output f `start_macro()` can be used as input to restart the same processing even if the AnyPyProcess have no cached results. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "0b2227b291cb40f4b79fc8a76140be38",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Completed: \u001b[1;36m1\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from anypytools import AnyPyProcess \n",
    "\n",
    "app = AnyPyProcess()\n",
    "macro = [\n",
    "    Load('Knee.any', defs={'N_STEP':10}), \n",
    "    RunOperation('Main.MyStudy.InverseDynamics'),\n",
    "    Export('Main.MyStudy.Output.MaxMuscleActivity'),\n",
    "]\n",
    "output = app.start_macro(macro) "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c3312153e3464082b56ee56246167b43",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Completed: \u001b[1;36m1\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "[{'Main.MyStudy.Output.MaxMuscleActivity': \n",
       "    array([0.00890538, 0.02510015, 0.06036529, 0.08096677, 0.08356285,\n",
       "           0.08356285, 0.08096678, 0.06036529, 0.02510015, 0.00890538])}]"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "app = AnyPyProcess()\n",
    "app.start_macro(output)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The effect is that the result of an analysis can be saved to files and later restarted.  The next example illustrates this."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example: Saving data to disk while running"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "from scipy.stats import distributions\n",
    "from anypytools import AnyPyProcess, AnyMacro\n",
    "from anypytools.macro_commands import Load, SetValue_random, RunOperation, Export"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data saved\n",
      "Data saved\n",
      "Data saved\n",
      "Data saved\n",
      "Data saved\n",
      "Data saved\n",
      "Data saved\n",
      "Data saved\n",
      "Data saved\n",
      "Data saved\n",
      "Done\n"
     ]
    }
   ],
   "source": [
    "\n",
    "tibia_knee_srel = distributions.norm([0, 0.18, 0], [0.005, 0.005, 0.005] ) \n",
    "femur_knee_srel = distributions.norm([0, -0.3, 0], [0.005, 0.005, 0.005] ) \n",
    "\n",
    "app = AnyPyProcess(silent=True)\n",
    "mg = AnyMacro(number_of_macros = 500)\n",
    "mg.extend([\n",
    "    Load('knee.any', defs = {'N_STEP':20}),\n",
    "    SetValue_random('Main.MyModel.Tibia.Knee.sRel', tibia_knee_srel),\n",
    "    SetValue_random('Main.MyModel.Femur.Knee.sRel', femur_knee_srel),\n",
    "    RunOperation('Main.MyStudy.InverseDynamics'),\n",
    "    Export('Main.MyStudy.Output.MaxMuscleActivity'),\n",
    "])\n",
    "\n",
    "try:\n",
    "    os.remove('data.db')\n",
    "except OSError:\n",
    "    pass\n",
    "\n",
    "for macros in mg.create_macros_MonteCarlo(batch_size=50):\n",
    "    app.start_macro(macros)\n",
    "    app.save_results('data.db', append=True)\n",
    "    print('Data saved')\n",
    "print('Done')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "All this stored data can be be reloaded "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Entries in file: 500\n"
     ]
    }
   ],
   "source": [
    "reloaded_results = app.load_results('data.db')\n",
    "print('Entries in file: {}'.format(len(reloaded_results)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[{'Main.MyStudy.Output.MaxMuscleActivity': \n",
       "    array([0.00516314, 0.01049623, 0.02314816, 0.04172461, 0.06237011,\n",
       "           0.07877448, 0.08608442, 0.08715083, 0.08739904, 0.08642276,\n",
       "           0.08642276, 0.08739878, 0.08715083, 0.08608442, 0.07877447,\n",
       "           0.0623701 , 0.04172461, 0.0231482 , 0.01049621, 0.00516314])}]"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "reloaded_results[456:457]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvWl0XNd1JrprQM0FoAooFGYQIMF5pkSZmuVBsmXLQ5y0naQzdNvJc5J+saPO6mfHzlsryXO8ekq8srptx4n98tzOSpy2ndiOZFvyIFmyBmogKc4EiHlGVaFQ81zvx5fP+xZISqQiSBzOXgsLQNUdzr333HO+s/e3v22r1+t1MWbMmDFjxowZu4rN/kY3wJgxY8aMGTNm7JXMABZjxowZM2bM2FVvBrAYM2bMmDFjxq56M4DFmDFjxowZM3bVmwEsxowZM2bMmLGr3gxgMWbMmDFjxoxd9WYAizFjxowZM2bsqjcDWIwZM2bMmDFjV7053+gGvFZWq9Vkbm5OgsGg2Gy2N7o5xowZM2bMmLHLsHq9Lul0Wrq7u8Vuv7Qf5boBLHNzc9LX1/dGN8OYMWPGjBkz9ipsenpaent7L/n9dQNYgsGgiOCCm5ub3+DWGDNmzJgxY8Yux1KplPT19f1sHr+UXTeAhWGg5uZmA1iMGTNmzJixa8xeic5hSLfGjBkzZsyYsaveDGAxZsyYMWPGjF31ZgCLMWPGjBkzZuyqNwNYjBkzZsyYMWNXvRnAYsyYMWPGjBm76s0AFmPGjBkzZszYVW8GsBgzZsyYMWPGrnozgMWYMWPGjBkzdtWbASzGjBkzZsyYsaveDGAxZsyYMWPGjF31ZgCLMWPGjBkzZuyqNwNYjBkzZsyYMWNXvRnAYsyYMWPGjBm76u26qdZszNjVZLWayNKSiM0mEgiI+P1vdIuM3ehWrYqsrOC3zycSDL7RLTJm7MrMABZjxl5jy2ZF0mmRaBSAJZsFeBERcThEQiERu/FtGnsdLJvFjwj6XjiMvpdKiSwuoo8aM3atmAEsxoy9hra8LOJyiXR26md+v3pYKhWRRAKrXBGscn2+17+dxq5PoxelVsP/fr9IR8eF2zU3o9/NzYm0t6PPGjN2tZsBLMaMvQZWLgOsvNLg73RiG1o6jZUuvzPeF2NXatmsSCYDb57djj7kcLzyfk6nSHc3+m1Tk0hr67o31Zixf5UZwGLM2L/SUimRQgGD/5VaMKhcgkpFJB4Xqdf1O68Xq+V8Hj/1un4vgknqYlavY0JqasKPy2WA0Btp9Tqeb7mMn1Lplbe3mtsNj0hTE/oDuSgi+PxfE9qJRAB6FhY0jGnM2NVoBrAYM/YqrV4HN8Xnu7jbfXUVgOOV3O31ukixKJLLNU5Uc3MAKQ4HiLtdXQAhl2ucIEslTEjVqk5GPM+l/nc6cV1u9+Wf70axWg0ejVLpQmDxcuZ0oi94vQjJXAkwSCZFxsfxPO12kZYW7Qv5PH57va/sWanXcazm5sZt/X7sPz8PD43Xe/ltM2bs9TIDWIwZexVWLMIb0tFxIYjgd62tAAorKwAPLtfFJzibDcCgubnxWFYQVC7jONy/uVnE43n5Njqd+LnSyYfegFwOoIvm8cDrc6OtwEsl3Afee7sdADIQWD+vVa0GYFEu43+fT2Tz5otvW68DtCST6nWxmt2Oa3A48OxaW9E/nU6QcK3bdXeDY5XPN35nzNjVYAawGDN2hUZ3/NoQUL0OPgC5AYuLmCBsNoCGUkn/b229MqJjUxNc9zxPKqVggvyD12rytNlwzJaWxs/zeZFYTCdupxPbXA5f4lqyTAZgjeZyibS1rX9ILZcDp0lEuSiX41Gz2QBorOTtel2BcrkMsFmt4vN4HMcWgUeltbUR1IbDCHHOzSFEdL09X2PXrr2qV/Bzn/ucDA4OisfjkQMHDsgTTzxxyW3n5+fll37pl2TLli1it9vlYx/72EW3+8Y3viHbt28Xt9st27dvl3/8x398NU0zZmzdrFbDAO92NxJnRQAgFhYwsYXDmNhbWuAl6ejAZ52dmADIGVhcREjplfgMa81mw7GjUfwEg5iElpbwY51sX0vzetF2XlNzM1b1PO/yMia6a8nIB+E1UDuH19jR8dqCQatVq+gnPG+1qs80Ermy8J8IwEgioc8iGET7u7rQ//jsurqwncuFvwsF9EVmFokA4HR14ThMizZm7I22K/awfO1rX5OPfexj8rnPfU5uu+02+cu//Et5xzveIadOnZL+/v4Lti8WixKJROSTn/yk/Pmf//lFj/n000/LBz7wAfmTP/kTed/73if/+I//KP/m3/wbefLJJ+WWW2658qsyZuw1Nrrco9HGyatS0cmhqwufZTLwUFwqZGOz6Qq3XoenZGUF/7e2XjlvxOp9EcEqnbovV5I1IoLJK52+kNNibbvLhTbS80Cr17FvKqWfXW1hpIuFd1pacA+tVqkgtFcqwUOxtv3cn6G8y72+dFo5J1f6bC5mVk8KPXdrr+Vi1tkJgN3djTZQ6NDrVc+azYbtkkn0cWsfM2bsjTBbvX4ltDGRW265Rfbv3y+f//znf/bZtm3b5L3vfa985jOfedl97777btm7d6989rOfbfj8Ax/4gKRSKfnud7/7s8/e/va3SygUkr/7u7+7rHalUilpaWmR1dVVaW5uvvwLMmbsFSwex+C9NqbP8Eh7u05Y5TJWrx6PyOgoJoC1b5jdju89nsZMnqYmrGbpcXkl8FIuY6Kq1bA6r9X0b1q1igmHq2evF9wLWjbb6JEhECmVsK/Xi3Yy5FCv47tSCRP6Kxm35fU5nbiu1yvMwPBOtar31ePBM7CCsrUAzeHAvXC70eZyGWCjVMLxSiU9TjbbGCazElrL5UaA5Pc3hm7sdv1xOPTvl8vqWgtSmpv1uZTLuNZ8HuDzYpyWWg3PYsMGgEsrEMlm8Vl7eyPwKZUAWjo6Lg8QGTN2JXa58/cVeVhKpZK88MIL8vGPf7zh83vvvVeeeuqpV9dSgYfl937v9xo+u++++y4ANlYrFotStIyYKeuyzpix18CqVbjKw+FGbwnJqG1tjTwUZg01NYnMzIgcOHDx49brmEzyeUwwBCkEICKYrBiesNsxKbnd2I9dPRDQFbXL1TjhWVf8FLGr10VmZ0UmJgA2KhWsrt1undiKRWzn8eAY+TyuNZ/H9l4vzme34760t788+GD2EyfCYlHk3Dlc63qCFmZEUbSPacHMhnm5EE8mg3ufz2Ny58Tv82mWT0sLriWbxTY8Xq0mcv487pXbjWe0adOlvW1WkMnfqRR+KpVGLlEyic9I4CYIjccb09epaOv1XjqslEiIjIyI9PYCiDG1nveLYJxgxuUS6enBffF40B+NGXu97YoASywWk2q1KtE1Sf/RaFQWFhZedSMWFhau+Jif+cxn5I/+6I9e9TmNGXs5y2Tw09Wlk7/Vbc7wj9UWFzER5/MiO3Zc+tgk4b5c9o51lVwsikxP47fbjYmDQGmtp6NYVL0WZppUKvif3JdIRL07hQJ+2+0XhjcIagikmB5N78u5cyKHD+PYDgeO6fdr7STqhjidAHfMWnq9w0PVql5DuQwARSCVTuOa8nlNU/b5FKQ2NeGecPLn9bjdClKKRfWilEoq/kdvzLFjjTwlZhjVagqAeCwCVIKUpSXwpkTw3ChMyHT5V3svw2Fcy8SEglYr+G5vx72anweYoVeuo0PFDjs6rp5Qn7Ebw15VlpBtTS+t1+sXfLbex/zEJz4hDz744M/+T6VS0tfX969qgzFjIpgk3O5Gef1kEpN7R8fFV+exGFa6zc1wtV+OMX24Wm0EBiL4zVCOyyUyNKSTQyolMjkJDoLNpiCA4QC/H5OMxwNwY13du934/mIr72IRbn8K4UWjCjwIai5l9BTRkxKPw5vD9vNYr9SG18qY6pvLqedieVkzq9xuTPrhsEh/v3peXk6Iz/qcZmZwv9rbcX8jkYvzXPJ5eMEYEqJ0/uIivkun8Znbjf1rNRzX50M/am/Xflgo4BpE8D1BhMOhYJA/l0MSDgZFNm4EaMnlRIaHG6+hqQnAPJUCcOnowLkoaDg/DyBqtHqMvV52RUNGe3u7OByOCzwfS0tLF3hIrsQ6Ozuv+Jhut1vc5k0x9hpauQywYo3TU1MlFLq0dPnKCgb93t5GkMPJ5eXMOsk0NelK3eUS2bKlceJJpwFURDDR3HQTJg1yULxekb4+rOYJOgoFeIqoHVIqAegQGIkokdbpxITU3Y1jra5iX5HGekgiCgIIsgi8SMRta1NuSKEAQDc9jX0rFXy2nqvzWg3Xw9AWvTybN1+cv5LL4Vqsz8MasmI2ET1VGzbg+6UlfJ5MqmfLel+9Xkzo9JbZbGjTwADuZ3OzAgIRHLO9HYBkchJ9LxDA9tb7RTl+EQ3TVSoaurNm/Ky1alW9Kj4fwPDEhMipUxf3DDY3A6Qw3BkOa+p+LIZ7RxK5MWPraVcEWFwulxw4cEAeffRRed/73vezzx999FF5z3ve86obcejQIXn00UcbeCyPPPKI3Hrrra/6mMaMXYmtrgKc9PTgf2qqcAK/lCWT4AIMDjaSF5eW4NZ/JUxNAmU+jwmpra1xoiwURMbGMAEFAphQSiVwEIpFTJxWwm8yqSGa7m49f7WqpNGmJiXDimDbeLzRS7K6qpM+JywR5W+0tWl4xOXCxEdhsovZ2gTCteTg19oIUi7XajUFXuSmZDLoA+Qa0etFbktLC647GNQwjt+P/V0uJeXabHgW9HRZQ3WJBO6pFSjw+UajAAfptMjJk/guHMaxrADSqslzufo+TMFnNtuGDehnp06JbNt28eywaFT1WRgya28HYJmfvzCDzpix19qu2Cn74IMPyq/8yq/ITTfdJIcOHZIvfvGLMjU1JR/5yEdEBKGa2dlZ+cpXvvKzfY4ePSoiIplMRpaXl+Xo0aPicrlk+/btIiLy0Y9+VO688075z//5P8t73vMe+da3viU/+MEP5Mknn3wNLtGYsUtbvQ73fCCgyrLpNCarV9LCSCRAsBwaatRlYZrzy4GVZFIBQyjUmHlRqeC45TKOsXkz2kESMPUz1hqF3OhZIe9FBMcJBjVMwRU4s03o5ne5cN2dnRq2WV7GTyajYZbxcQUpoRC2bW3FfbwcoEBy8Btt9ACtrOC6Vlbwf6mE++L34757PJjgb7lFyc9LS7gnBAjFIsBDMKgZX+TBLC+rKBwze5iBtZaQy2rfxaJySHbuxHexmMiJE/i7uxvAoblZSbDJJH5E1BNyMevsBPCgUrPHA3LwuXPIbhsaujgp2uPBeVdWAJI6OtAPPB70TYI4Y8bWw644rVkEwnH/5b/8F5mfn5edO3fKn//5n8udd94pIiK//uu/LhMTE/LYY4/pSS6y7BoYGJCJiYmf/f/1r39dPvWpT8nY2Jhs3LhRPv3pT8vP/dzPXXabTFqzsSs1Vlimmic1VQIB9ShczAhymOZpjVzG40o+XWvptIZv1qYs12oIAWSzaMvGjY0r5VgM29CLY01rtRpDO/QU0DiZMqWaISivF9+trOB+BALYN5XSCZYr6WBQ03TJl/H5NMTD7KK1QIRk3/b2N4bvwHBOIqEg0XrfCgX1Jvl8jf8zDbxaBUCxck6am/Ed06bpsbDbFfSwlpPLhXvAEBQ9U9bzW9tUr6uHjgA6HG68fzMzACc2G0JG1nR1eu5YeygcvhCA1OsALV1d+szKZQCi9nb8vBwx/GLaLYlEo86QMWOXY5c7f78qwHI1mgEsxq7UFhcVbMTjGICtmioXs2oV7vRSCZOOlee9soLPrGDHKrceDF4onz4/r4P82klHBMAhl8OEwwwdux2Ah7yIteZwaCov+Rn0qrBOTKmE/8tlTDh094uo5grLCaRSylXgaEF9mXQagMfp1AwlhkP6+gC8nE4cg2EsXvt6elisHA7eL07aiYTI6dOq0cL7xUrYBApWHROnE32DYZ96XT1OhQI+S6dxnyiD7/EoUKGnJRBQvgmzldaOwA4H9slk8D0BAEN6a4nfVrDrdCK8Y/Xa8LlXq/ieWUwiFwctlYrI0aM4zsVKNKw1hhAjEfUmvR6lDIxdP2YAizFjL2PkqAQCF9dUuZhRk4TaHEND+t3qqrr6aWfOqBaHNZMjmQRAstsBFNbK/PNcXD3zp6UF+8TjmOyshQ0LBV3pi2Ci48rd48H/5TImK59Piyl6vXo9Lpd6SqxiakzBZuqzx6P6ISzo6Hbjf2a+MCRFjRC/Xyf8piYVZFsvYwXsSgXtWVlRj4PDgcm4pUUrJ1McjtlADMdR7Zafseo171GtpvewXgcoZZXu1lZNeS4W1XvFY/Oekojr8+H/ahVghboxzc3adhElN1+s35TLqrPD0KHNpvycchmgamhIvYAsOdHd3ZjSfuoUAGexeHkqtySZh8MASEYZ19jlmgEsxoy9jMViGJwdjktn/1htdVUza+Lxxsq5qRQGfetxRkYw0EejWuNlfh6TXzCIbdeGAEQwGc3NKa8kGFTXO706fr96SKyTGoERqz/7fKoxEg6jPUtL+IxidLUarodAx+/XdtXr2Mbn00maXhSGOZhOTaEzEbQxGsWEXKlottHyMo7B9q5nlhDbmkqhfcEgQKnXq6GtlRV8z3sfCGi4jKEjvx+fUZRPRAnKBBu8H3Y7jt3SouRllk0Ih7Wacnu7atrQE0QwTK8NU5srFa3lEw6j3xAQptPgotCjt/Z+Mk29XgdQ7e7GM6tW0T9vvVXDRORHWQnm6bTI1BTAzcoKzvVKXhNm2rEPGDN2OWYAizFjL2OLixjIrWnIl7LlZUxaXJ1a9SoyGUw+Vtn+uTkM9D09mr3R0oLV7qW8CtksCI+plGqCMCvF50M7q1WR558H8CEhlhktBDDkQnD1zwmJoYVgEJ+R8NnUpKRfip0xTGG34xwcITo6cE02m3ocmpoauRFWkilTbF0ulY9naCgevzAU8lpavQ4AEg6r94yTPAEd1WAzmcYQEsEKQ2qcuPN5XBtl/pmJxNTpahXPgjwXHpfghSRl1ibiM+Lf9LrQ85LJYPv9+5EyH4uhPzHsSG6O04nve3svDQJXVjSd3eHAvZmbQ2o8+yT7t5XQHYuhD27YgHcmEnllTyTrJVm1YowZezkzgMWYsUsYJxUKrF3KajVN/8xkMNlaVWZzOfxYXfOLiyIvvYSMi+VlpDsTBJTLjXVmUilMGuk0Jihqc9CLQS9QJgOCpcMBz04kgu29XnzGH1ZOZmqziKYzezw6ATMNd63qrLXGkdV7wIk3lcLE19ys3goSba2ghZ4ZEkQJpsiroJdjvc2a5k2QYQUX5Ig4HAocmB1EMBCLqZeEIbGWFr2/5KIwnCSix6/VcA6So1MpnIvDE2s1sYoyydIM3ZTLaN+ZM1p8kO3weNAOeotIAm9pwU9Pj3pDUiklCns8eKbkEwWD0PthlhpTqq1Anh6/nh4AzcsBIhQ1NF4WY5djBrAYM3YJuxzvCou9dXVhkGaKK7sWa/owFVoEqb6joyK7dik/hiRLmw1AaX4eg3m5jIE/GsXv2VmAEgpzUV02m8XEwoq6TieOWS6jXSy8x5AOFVdzOXzvdOI6XS6tNyOiHgUCE4ZQbDb1mlC+nlL7zAridVCQjmRlatjk8xpCElHib7Go4IYF+NbLCBjsdq2O7Pcr54ZAjancySQ4N+SiOBwKJOhxYvYUvTcMh9GL5HBoSQQen5wUZgyRwBwIqGcrldIK3yKagdTcrEUXXS711jGcVigAXORyquVCbZdEQrfdsAG/qb9TqeBat24VeeEFtGXXLgWYa/s2a1ARgBDAri0GarV4HOd6JWkAY8ZEDGB5o5tj7Co1ek3cbngJLmbMHunoUHXPSkVJhGtXoeUyCIq1Gvap13VSKhbxeTqtqdPJpHILGD4Ih+HSJ1l2cRETbFsbztvWppyGWAyggZMBiwm2tuoK3eNRcS+SagsFTbMtlXCd1pTapiadmDnxcnLv7dWCe9baSuSklEoqhkYVVRbPCwY15OFwKE9jvUNCLpdqojBLqlTCMyVpOZFQ8BgK6T2ix4ihMRa2pDdMRO+Z3a5Kv/zMWkuJWVOs10PgQs8HU8uzWYC+SAQTPqX/qa2TTqsmTiKhNX4CAew7OYl9WA2bpRkImB0O5SOFw/Cc7NoFzZ9cDh4+ekTWeg/J+eF7wGu4FOiv1/GeORyNoN6YsYuZASzGjF3Elpcx2FqLGlotkdA02MVFzdAgGdEa5ycZNhbTMEtbG1atkQhSQ5lS7PMpGOjpadye3o10WjkGGzfiHJw4uZrmipq6ICIIO9Vqmp0SCmlWEosxVquNSrScvEjCpPIsQxwiOJbfD4Bx/DjaR8AyNKTnjcXUC2Gz4W+GQjIZTJz00lDcLhS6PEXWV2vkjsRiCkJYdZrhNKYc0xPDcE1rKwDDyZNoP7O7NmzAdXOytoZZSMqll4UeJWt7CKL8fgU4fK5MN15YQH8jeZeCf0zLpmUyCBWl0+rxYaZRIqHXvLCAayZ3plpVkcS+Pq3sTE8OPXJ87lZ+Fp9/Lqdpy4uL2P5iInOLizjfyylFGzMmYgDLG90cY1epzc9rOvFaW1jQrJiFBUwglEina5+ZFMwUYaopJ/+XXsKq9JlnMGm8+c2aNZJOa6Vkrxcr3FxOJ7BgEPtS1ZZZLDMz+G0NzVBIzOtVMqjb3VgjiAJl1GRZa5xYSyWdcLm9CL7LZpWDwYm5VAIJlZlLInrfOPlxH7tdQ0yplHI5qE2zXkbPBSfWpiYNZ9Ejwlo/uZxm6JAQaw2lOBwKErkPFX2t1bEZlruU2i9B1FrtHHo/cjm0zeVCP+Uzs9nQPrsd/aenp1Gan+q2VDG22bCd36+8IxHNChsdBXn74EG0c+tWrdrNvmCz4VnSA8cMOHoOk0kVP1xYwN9rReaY8dbc/MpaLsZubDOAxZixNcbBu7e3cUVIMbhoFIM2q9CSmMuwCrNzCgWAmVgM+7e347gEMefO4Xi/8RuYQGZmdIU8N6fkz2hUJ7v2drSpWsXklEoBEFD3hTwL6oZ0dyu3gd6KV5LFL5W0uKIIJqVA4OJqplxxE3SI6Iqbq+xqFW2x23G9q6sa+opENERFTwI1UXje9ZRwp3cnn9cUb4ZmqEuysAAAQc5IZyfuBXlDLFzI7CpmTNXrKgK31vj8rMCRAOflKkEzBMP05kBAPVcs9UAvmdOJ+9verhL/IupBIjBLJHBsAu6FBdyDTZtEvvc98Fh27cKzOXCgsZhlMKh8F/JzOKzOzeFe0bPo9So5eS0wMeRbY5djBrAYM7bGLka2pUAbP5ufx2RQLGIAZ0bI+fMAK1QtnZvDJNDerkq1p09j4F5eFnngAUwgTIfmwD8woGm/IgBG1DApFgFuSKStVBRE8VyTkzhXMgnQwjBES8uF1YWpjEojp+NSWhrVKkBXKoX/reUFOHlT0p/AiG2nh4FeCIKtUglgLhBoDHFRBXa9jPec2Turq3i2BHwUVfN41BPF9GKGV6zHIABiSIyeFfKMCL4uBkryeX2m3OZitaYIsETwHBwOgInhYdVtcTqVg0Mg3d+vwLG5GdvmcqqsTDVlEXy/vIxss298A23o70ebNm0CqKbqs9+vwGl1FX2RXpqFBfS/5WXl61AfxioYVyjg/NbsOmPG1poBLMaMWaxSQRjDWjWX7nnySObmGoXeolFV/BwcVI/B4qLyT0olHOPFF1WkbcMGTAKjo5gUh4ZUv4PETRJBbTYM5LOzOKffj+8odMYijOUywAwzR6yVcRmqYqYJNUYikZevBSOCtk9OKtG0re3CYoz1Oq6N6bv8YYq01atTKKAd1snZ5wOwWVzUzxh6WC8jZ4TAw+eDZ83adhHliPBe0nvEqtb8sRJ4rfcllVLlYRFVLn45UTwSr2MxBXx2O3glVq/Nyop6RnjcWAzbe714bg6H6gQNDKCdpZJ6hpxOPFMel1lq6TRCQl/5ilbf7u/HNXZ14Vmxb7LfnzunKdPkXLFN5DsVi7g2q0fl5cKwxoyJGMDyRjfH2FVmi4uYjKyiWAsL8KwQrFDJk7VVmJGxdasSWJeWtEKxy4VjjI7it98PEPKud4n88Icihw5hsJ+aglw6lWqdTiVBcrLr7sakGgwqd4Zy90xnbm0FIOjuBoCYndWqx9TGIIF3ZUVTiz0e1T1hZlAqpaEp6+qXKc7MMvH5Lj35MmxkDX+IqPouj5VOo70EC7WaSt6vp/GaWWiQk69Vc4RZWjSbTYX7Xu66SSoWacx2Wlxs5Iww3MSUYobk+MxYbsGqFkwF454etI96Mkxl9vnQZ/hsWGl6cRG/mRnU1NSYBdbair7s9Yo8/riC95/8RInm27fjd0sL+jS9eyTeTk+jPR0detxgEP2YoC6ZbKxCTVC3YcP6qhsbu3bNABZjxiw2Po5VJLsG5dSDQawAWfxtfl55G0zh5GQTi2n4xePBBEGhuO5uAJNf/VWRn/4UA/zJk5iY29o0FMRQTzaLY1AjpVDAapXy7VRB9XgAkqitEokAzAQCWniRGT4EN/xhqnE2q6nanJi6uhpDElaPiIiqthYKWn2a2TWvxMdYGwIRwX0LBnGtlOu3AoX1MBJTSXalR4tGT9bLeXroSWBqONVnqRT8cvchFsNPJqPEZ5Zb4HnZ10h65k8qBUDKOkXkAfX1Kahhmnxbm/JuWltFxsYurDVVq6EvMPX5ppuw3V13oTozM9CiUZFt2+CN4vvA0BNlABYXFXBXKujDTU2a7dTcrIsB2vQ07sHLabcYu3HNABZjxv7FVlYw6fT362cLC1glWsHK+Dgmmr4+DL7MgigUMNiTI+DxYEKYmEC2RTQKT8w734nznD6NybGvT2TPHhwrmdQVqculnp1UCsdMp5Vjw9AMs1CYCUTPzKVCDrkcJkca+SYMV5CgSal4GmsQTU4ifTmZxHkZCqG2i9OpQIgTE9N0yaFhphG9GswQomquNb16vUNCViBHIT7ybFgYkf8zFETPE0Ge04k+QG8VtWhYJDIQABjduxf3lunOvP/MrrFWS6bng0ay6sW4RZmMPlOnE/2EsvypFI5TKmk7WIQzHAZYIoig+CDDO9/5Drwp8Tgy2R56CN+NjED5dnBQhQDJ/SmXlZ9CBeh0Gv1m1y4t7ElBPRa6FFECMY9pzJjVDGAxZuxfbHYWIIMrRKv7vaND3ekejxIJmT2Tz2s6LjMiRETOngVvham+mzYBED36KD5rbcX5KhVMHtbsEhJRuUpfXsZg39EBMMKJK5lU2XWrLDsl3+fmNA1XRMNCLPpHUTeSZ6nJUigoaFlexuSTyaDNQ0Nw3Xs8WjjQ7Ua7renKLheOxfBIJqP3iHwJElnpEaAngVol6xkeYBiN2jLVauP5eS0sXZDP45oJwug94f1loUfqzfh82GZ6Gp616Wmct6sLz4nFKKnTwvpA5K8w86ulpbGEABWI29vxw1BdKoVn5XLhONbKyuk0gEcshmdILRZymQoF9dwQiAUCIs89h+17epSEOzgocuSIyL59UM5lWG1uDvsUCioENzenf585ozybpSXcg+Vl5a3U6wid9vVpqMiYMZoBLMaMCSaYiQkMyBzg6a5mfR6vFwNxZycGfoZASDQVaUz/nZ7GYE8+id0uctttIo89homHwnD0InC16Xar7kp7OwZ8VsFta2ucwGMxeHxWVzEJktxbLmtop7NTs1wIbDIZTMJWCX6mIIsoaCmXMfkxTObxYF+mVGcyjd4TckComspQBov1UcqfnBBqxbCqM1OCqf663h4WXi/BHQEjyw94vSrmR1BnFb2zlhagh4mlCjIZTd9ua9NQBz1mKyvqwaLCLdVyCWDYRpY7YCVm8n4WF7UQJonU9OAwVLllS6NXJpdD3y4WATzqdfRnAjV6eYJBgIlwWOTYMfSre+/Fd489hn516hTCRvv36zmoqZLJaLhndhb903rfCAorlUYAfiUFR43dWGYAizFjcqEORLWKgbupSavQzs4CeKysqJ4Jyamc0Ji2ms2KPPIIJvbNmzGB3HMPXOkvvIDj9fVhldnSAsVal0sl4CMRtGlqSrMzRDDgJxI43sKClgYYGsJ2Xq+mq9rtKrXPlTn5GBR+I1+G2zPN2Oo9yGZVAp7ggSnLrBacTmM/ehZaW7F/oYDPGAIicLFqlbhcKmDGSbdY1GOtZy2hWk2rSQcCWs+nWMQ1k5dCbw+9TiylwPYyhZyeJSrQEuTkchomoweFcvr08PAZRKPqaWE1bnq8eH4RBVMtLVp/KRhU+f6lJeWpDA5i+/Z2XCf7xvw87v/u3Qq829pwXQsLAOsi2O/553Ft73wnQPL4OO7L9DSI4zt26H2dnUVoiUCahPWuLu1fvKbubgBvemEqFQ05XSq13tiNaQawGLvhrV4Hn2TzZk29XVrCID01hcm3WMRKM5dThVNrtgbTNXm8f/5nAIvBQWz3pjdhUvrOdzBAHzqEVWtnp5I9WUCQqb3W1FcO3PRecOJrbsZkz0KDhUJjQb18HsflqlwEEyy9JIuL2I/m82kYg2CMYbJgULkQ9Ip4verB4b2z27WOkdXLQlE4atdQy8Ru18meIRl6f6zXvh7GEBTl6OnhoAAaJ1ZqyPA6yb0pl7UwpFV6vlLB/WGIxm5XMjHJqcvLWnOIfYfPi8J7ra0Atq2tWtiSWUdMHyevhSnaIug7VBNeXgbIbm3FNtb6TAyFjY3hGBs24Lnx3Cy6SLHBZ5+FZ/Cuu9R7SPHCd7+7MbQzN4d+E4+jz9fr6Gvd3eh37e0I/wwOon3RqPbR2Vn0U2uFc2PGDGAxdsNbPI5BvLcX/7OAXTiMlR4zIUjQbG3VtNNqVUNDtCeewATAIoVbtmAy+9a3cJz3vAcDf2urKrpGIuo1aWnBvpUKwAOzdDIZXV0nEpgcW1sx2TOTiTyIZBLbkB8Ti2na8PKyhjtCIa0EzQyRfF75C62tWlagXleQ0tKiGSyFAvahV4TaJOReuFw4Hgs2MvtFBJ8xjMTsGoIxm01DB+tlBCm8PhFV17XbAQocDlwP08BF9D5zQs/lFNS43aqa6/HgOMUingHBAr1GDAUys8zvV/l6prNTAK5Y1HpBDBcGg5pJ1den6eCJhHpxajUch2URRLRaNz07JBhPTqpwYSqF9gaD6JcHDqBfnzwJ7sqmTfAWMiV9eVnkl39ZQ1kELdRg6e5WMbmeHs0sSqXwXSqlnsR8HqBl06b1e/bGrj0zgMXYDW+joxhAyT0hKXFqCoMtlUpZ4I1CXZUKJiariNfp0yJPPgliLUmPGzeKfP/72O+BBzCIz89raIYhh9ZWrDbXTtDpNPg1lESn4Bbd9pw4Gb6ipkahALd9Lqe8EE54DOWI6Pk9HgAY8imKRRVPi8Vw/c3Nqj8iolWHGcIQUYItNVXIx/D7tRYO+TH0UDC8QtKq3a7tWE/SLcNS1EuhWJ21qjLr9ljDaLwGKs4yjduqy0IAR4IsC0YSYLS0qCYOASPrMtHjtJbTkk7rD/lFnZ3ov+WyevqYtcaSA93dABs2G/p0sYgQTG/vhfd3ZQXbOp0AEewbU1Povw8/jM9vvx334swZ3DPq7XzgA41VrCm0uLioxUBJDG5uxv47d2qBRNr581pg0ZgxEQNY3ujmGHuDLZfDgGpdyZFse/w44vLUuaC8PjNhyAehzc+L/NM/waNCHsrAAAbk0VGQE/v6RP73/0aIiDLuzc04P7U0VlYweBeLmNx8PlUnnZ0FZ6BSwUAejerqu1DAIM/QQLWKiYXqu+WyhhpqNc0UopZKraYZTg6HggevFxMNQQkzZtg+klUdDtUQoUS/w9HofSEIYuoyQyQEQUypTqVwr9e7+CE1bEIhrV7NKsbUZCFHiYRWcnEIYOhlYgjISl4m4Zb3hd6HchnnYV0p8luoPcMUa95TZiuxQCPTps+fRzsjEeXj9PRozalgEPtNT2sFbBZrnJtDP2O6tN/fSNCemtL2EchlMiJveYvI17+Odt1+uwJqq3ftne/Ue2wFLZTqr1TQz60FHSMR3EemeCeTuBcDA+vbB4xdO2YAi7Eb2iYnVbFTBIMoqzBTx6JUUmKgx6ODshWsJJNI9xwexqQVjWLwz2ZBVuzuFrnjDpG/+iuR970Pk0G1qmq1XDGLaDiCYYd0GmBobAyf7dqFNlN0LZ1WPk1TEyahdBqT0tatSviMx1UnhqJuHo+GfpieSxBis+lKnSAom9UwDbkWBDWcvOl1YFYSr4M1a6zelnwe109wwOMz7Zbk3fUyFlokcbhQ0DRjpvs2N+uETaDGLKB8HveGoIKp3eSisJSBta/QI0YQ5HTiupuatLI2U4uZiUX1WgoJdnRoJlUmg9Clw4HPg0Fs19KipF6Gpk6fhtctGoXnjyE7FmIkqKVXheq7DGOdOQNw3dkp8oMf4Pe2bbheguVcDse//Xa9ZqtKNEsIMJTZ3Y3Fwa5dFwrJnTiB469nWNDYtWMGsBi7Ya1WQ1rmzp36GQfMl15C5sT8vJJJWQPFWpFWBBPJ178O93oyiRU1Zc9/+lPsd+iQyI9+hGOurmoo6ehRDNhMCz13TkW/UikNPa2soJ1tbZgcVlbQVvIVpqbwP8MzVApdWWnUDgmHG/kT1to48bhW7rVqkFAjpVBAu/kZvTBWvkm1qplATL1leIUeAn5uLRfAvym+Rk4IdWLWy5i+S+8JibQUiaNXSEQ1YSoVTcmlF4rgjKEut1vbbQV8TOMlILXWKhLBd4EAvA3U7rEK2zElOplUT04kgv3JPyJ5u79fPSasIeRw4Lunn9awEAsg0vM2OAggk0hAL2jrVhw/nYaH8Ac/gJclHsd7cuAA7kO1CtDCtPz+fnBdaKxkTtDS3g6PYWen6sEw1Mgw68VKZRi7cc0AFmM3rK1NZWbGBqvttrXBAxMOY1Jleq6121QqACtDQziez4e/KYBVKGCisNk0Q4KT0osvYiAmKZErZGZkNDUBcExN4ZwsLJfJaK2ikREM8hs3YsCPRNAGCo9t2qQaMFRj5TUyhXlpSQv/tbbqZFEoAGwxU4bpuZw8qcjK0BaBSSaDSZVeikJBs6t4XcwCcrnUU8PPOFHT+2AtmvhaG7O8yKdhSrOIeiYcDnxOwTZep9OpyrhUu6XqsYgCIXJYRHAsPh8RJfaKYFsKtjFcQpDZ1qZhnnJZw1T5vJZ2aG9HO5eWlFw9NYU+xlTlcBh9bGAA5/D7AbSdTuxLMJxOoz0dHQDaBw/i/6UlbH/4sMittwKgnD+PEBALLk5MaLhx0yaESGkELd3dWuyQ7+DFvCz1Oq7PuqgwduOaASzGblg7cQIcFatQXDSKz3fuxODMVTXJnwwdieC7//2/Iat/6hQm3y1bdDJ58UWsVrdtE/nxj+FFmZvDYH32LAb3zZtxXhbACwZVUXd1FYM/peBZsI6ToMcDLsz8vHIeqH1Sr+PaymUVlrNOnAQdwSCumTojBBHUWRFR3szUFNpAyXgScq2y9cy6oaeiXlelXnI/KMNP704ggHaQ2EyyLkmt60m6tRKnXS7928rPIbjg9dGLQl0UelToRaInZa0nixk6tRqeY18fJv9gUAEbyau8j6urqoFjrenEcF53N0DFwgKeU3OzZvxkszjP7CyALoHS/DzOw2ykri4AhJYWHI+ZWqurqgvz2GPgYLnduH5WEm9vB2heWRG5/36cK5UCeGlrg+dk797GchcELcGgZkJt3ozFAcNv1qKIExMInVrfPWM3phnAYuyGNKZhDg3hf4YgqBTb2wsPCSXL6X2g1evQVNm5ExLlLhfACYu8feMbGKi3bhV56ikM2KurIDyOjgK4HDoEoDM/j/MxJMNV8sgIBuqNG3Gczk54TZJJAKMjR3DMLVsauRAej/JBRNCuQEC5FfTwcAIjGGK1XGprrK4q6ZUp0PS+eDzYl+Jl1ro/1DUh/8c6+cdimrVELRNmwpDDw2MFg5gQ1zNLpFJRbg+BSbms5QJElJgsol6UUEgzpngNBJJUv2VdJBKaqaAroqJ09Cq1tChvx+/XkBA5PFSjrdUUlJB0u7qqXBMK8vFZkJR7001a4LK3F8/l7Fn8UE5/61YV0OvsVD7Trl0438wMtslmAUZOnkSIs1QCTyscRp9PJgFw02l8f+wY6hAxZVkEx1ta0pRv3svRUQB8q5elXNbPjd3YZgCLsRvSTp+Gu5qrYBY5HBmBu7xSwYDKyZJhI9qjj2Lgn5nBBN/Sgkmsp0fkq18VuflmrKAnJzFphUKY3FdX4fHYvh3nPHUKIGZ5WRVlyQN54AGsfpeWsHJdXcVkkE5j4t+xA+1KpzHpkKzq9QKIOZ0AQ8vLqo7LlTxTiQkouJolcGM4gNkz/N7jUbIklX4pimaVlrfyUzjx04NDHodVhK5Y1Gwiis0RxFg9Q6+1kfhKUieF5AjEPB78plaM3a7hIe5PQEPAY+WzEEAy9NPRoR6pel31cmIxPB8RzUBi6ImgiARem01l/ltb0Q+9XjznuTlNZ2b4p1IB14RVnN1u9NfOTvSvpib059FRXFtbG44XjWIfhwP9icTurVu1PtDp0wgXVasi3/42QHgohPNPTcHz8p73QEjxXe9qlABgNhZDjn19ADr0RBGEieA9GR5eX9VjY1e/GcBi7IYzckG2b8f/nDRZC6a7G0CEmR8uV6Pi5k9/qhPZiROYPIaG8PuHP8T+u3YBaExOwsOxuooJ5MQJ1UE5cQIA56mnMPhHo1iRxuOYhBIJAI5sFgP70hLOPzyMNi0v68q/uxuflUqYBM+c0XACAQWzSigAx2vn5BkM4jjkUiwu4rxM37Wq61KWn4RSckBYTJClC0iodbtxDOrOWMXTrLorJG+SPLreISF6OKihQs8RPVFsH6+RgIx9xloPyRo+snqP+Js6LLynDCs5HOgbTE1eXtZ0YoaWHA7l8/Ber65i/+ZmFRtkQUq7HX2HHp1AAEDi/HkcOxxWkBmJALhkszj+wgLCMDMzKipInaJMBvtGo6pHtLoKL6DfL/L3f496Q14vzp9K4efd7wagefe7lVhbr+NcTif69rZt6tlj2Qp6WTIZ9MeNG9evLxi7+s0AFmM3nI2NKblVBIMma/cw9HHypK6GOzt10jx6FIPq/v3gr7S1YcVZqWBFmUqJvP3tGPAnJzGwZ7MAGc89p+qjIyMYqJ9/Hsd/61vx3bFj6tYnwZKZKlSXpXBcJKKCbskkJpCVFQzufj8mk74+LbjH9N1aTVfLrBZNyXZOqO3tuC6fDxMoFV9XV/F/Pt9IGGU4g4qw5J8wLGUdPTiZM4RCIEDvAUEPM43WE7CwbdQQsX5G4TiCLJYWYJYU20XAw7IG5KIQUJC/Y7ejb1nBbzSKezE5CYDA8AiF4kiOrlY1rMewkc+H+zs1pZwVhwP9pKOjUZHYbke/F8Hxp6dxLLtdK0Ezo6u3F/unUiJf+Qq8JrUaAAXF4djn6SlzOrFfJgNC7t696NdHj2o/27lT5Cc/AdeFfJzFRfwmibmjA95ElwvtsRZFJCnX2I1rBrAYu+HMOvCxyCE9FVw5klzKz0TglRkfF3nb2xD2aW/HD2vDvPCCyPvfr5NPaysG674+7Lu6is+WlvA9s2M+/GFMIM8/r27wZBIAqlTCxERBtd5e/H34sKbXMkRBTQ1qefj9OO7YmJKGKV7GGj7M2CFXhdojLP63sKCTEkXjkkkFFZGIAg1reIUTIM/l9+M4BGOJhCrt0qvC62E4hpkr6x0ScrnwN4tGErhQnM1ajoCS+SxYyHIHDKMRgPFaqd3C0BkVcYtFBZVMQWbhSqaWU96fgIphJmr2UHhv3z71pLDPkGTtdKpmzvbteF4TE6p9w/BRRwd+qP/S0QGAMTYm8r3vYV+mPDc1AbTefjvelWQSz9/nQ5jy6aeVvD04KPLMM2jvoUM4/vHjeIdcLi1Z4PUCvGzbptWaKdTIooimirMxA1iM3VDG1Sp1HVgtmQTIaBThlGi0kXsyOQnvxwMPoApzNosBd+NGDORHjyLNk+nMlLbv6cHgTu/N0hL+b2nBeT70IRwvkcDknsup0msoBIBCZd18HseOxcCz4Uq+uRnbUsxuZkaJpOEwfqxF9yjhbq2Yy3TjXA4/09Oqssu0ZXJrIhEtDMjwDSfPWk2zqqhFwqwVeiQCAYC4aFRDKnwVydFhJg49Tetl9KIwjdrvR1sCARWJYyhkdhbPkXL+zGahNgvTognsajW97yJKOmblbOrV0MPU3a1p5RTVoxBdU5Nm7dCLRcI0a0NRWdlmUyI1Q1WRCPpwvY4+29GhXoyVFfQZhp0qFX22d94JYu7iItrW3KxFEuNxAAynEyDI6UT/O3AAqf779qEdLS3wWKbTAPTz87iXd9yhQod89hs2aJiJi4iODu07xstyY5sBLMZuKGPKsogWOaQngGTHs2c1oyEaxYTw1FNwZZ89C0+I240V48oKBm6XC/yTw4dV52TjRiUfWleS+TwmiLe/HanPTz2FTJ+2NoALFi3MZtXDQBBA9VwCFUqvJxIAGakUPu/rw+9EQkMCIrpS5wRtJY+SaDw/3ygH39ysqqgMcbCMABVqy2WtOM0soGIR7aEkPEXncjn1YjEUREEzhpZIDLamB6+HWXVYmppUGn9lRUEIQROVY8kDot4MQY5IY3iIoSCWKuCx6WWamNBK2RSIoy4K+TylkqYS856Qo0LAyvT0iQklbff2ApQzaysWU54SaxXRc8SQDQszEqBPTaHf/eZvQiyOz39gAMBtYEABTDQKMO1yARxt2gTQ8uY3ox/MzWkb3v9+AI98HiCf5FuPB/dncBAghtyrTEbDaGvrfhm7scwAFmM3jBUKGIQ3b8b/y8uYWEol/ESj+N7nU7JtWxsyHO6+G4Pp976HCeeuuzDou93wvLzrXQAfdI/39GDimJjAftRQOX4c34dCaM+TTwJc7NsHwMHCdV6vknNZQI/KqtTWyGSUgElQwkyb6Wmco68P18CQC7OAGA5wOjE5xGK4H263itlt2YLzZjKa6szwUyqloRFaU5N6VphmLaK8l7XbW5ViWSGax6e3hsddL6NuCj0LDOW43RqeozYKM4i4T2srVv/cl3wjcl3oIaBHxu9XbwvTlRkimpvDM2NGl8+HYzOLhyEXFoSkAB0B8eIi/qfIoc2m4JS6Oj09aMfsrD4HZnOxthG9NsEgrv+b3wRIvv9+VBhnvx4YULHDN70Jx2xtBZDxeNB3KhWk3u/ahXfrBz/AMx4YgFLuQw/hvfL7sZ/dDsC8cyfeI2akiWgY6GLq1MZuHDOAxdgNY2vrkiws4HdbG9zVzOLp6MDAyLDQY4+J3HYbdFe4KqQi6w9/KPJzP4eV3+io8hyamrBKZbpyby8AzbZtGIRbWsB5KZd1ddvTo1WL29ow4M/OqmBdodAo2EWvCTNK/H71xGzYgAkrkcAAXyhgW49Hix2y1o3NhjaQR2GV5A+F0BZKt1PLRURDKSykSA0btpPbWSXXqRbM1OZ8XmvXkC9CPRZ6gNY7S8hahoBVma28HJ9P+Snkqlizfrhfc7Nua+Xl0DPCUByvqVSCJ2dpScEjPVvLywAhDAvZ7XhGTG9mGKmrC4CAYHV2VrO38nn0E4LCdFrLQrAWFftNZ6eWcajVVKeIQoaRCM4zO6vPizyjchk6L8yemp8HUN68WQUV/X6AmO99DwCLuizj4wgNkZ9SKKhIHAszki8UCuGZHT8OwLLeZGxjV58ZwGLshrC1Et+JhK4uSTrM57HSZaG6aBSEwXBYvSf79mFiz2QAON70Jgz0x49riikng9VVTNCRCDguhw5BD8PjwXnKZXhgmpoQ92fKbLWqoYO+PmxfLKo7v1zWAn3T0+rW56pUBBPO+LhmXtCLQU8NPQdNTZoxxRpJPp9WGObESY4PJ3YRTTlmdhABDSsv8zwMX3B/ho/I92ANG+qZ0GNBkup6elisbWKGEj089ADRUxIIqFQ/+R+8Nt4XeqM4mTLV2W5X4jFDXsEgJuHOTtxrEpFTKc1aok4LJex5n8ghWlnB95EIODAOB753uTDpM6PM51NeCyt807M0OwvQS0BAcLa0BLI4uSt9fQqm6QWygspIRLPJxsbwbmzdCo7WwYNK5n3+eXz/7nfjfXjgAdyPeBzHm58HeXdxEduT40Ivy8UqrBu7Mexy52/nJb8xZuwasLExxMZpzATp7NSJd2ICK1au8mo1eGESCWyzfTu2HxvD536/imMtLYHD0tuLwbRSwcTR2gqgdOutGPxzOQ13HDuG8+3bp+Jf1AGpVgEWuPoWwbEGBnDeuTm0o1zGAE+Pj9U7cc89msFCEDYzoyvvvj4lforgHmQyOO+LLyofhSm8zFgR0awX8msYTiE5mOEceg0YLiL/guERa8Vogh4CgFxOM2bWy+gdIshi+jG9BVSpLRbxLKiGTJ0WEm0JSlh8kvor9NKIADyw+na5jOfHkgoEjr29CjwoUkdBwZkZ3JsNGwBGSiU815tvBsBlmI5ZZsvLOG8+j+02bMAPpfSLRbStuxscJZcL2zElvacHYZ+VFbRnaQnbTk0hTZ8E6XBY78P+/fA0Dg4C0JdKeC++9z0A9pkZ9GEqRb/pTfBEDg2pF4ohtHAY5+Y7waKgDIUZM3YpM4DF2DVtLN4ngoGdaqHJpEruMyRBYuPUFFaNjzwCd7jXiwG0uRkgYWgI+x8+LPLe92LlOTqK46+sYGA9fx5gZWQEE9TNN4s8/jjA0fAwztvSgpXo6ChADcMFdjvO39aGvycn4cmhfD45CyQ/ut1o89KSKtiS38JChrfeql4b8lNmZlTgizwSpvrSo0CCp82G+7B5M45LkMFCgNRO4faxGEBHOo3jc6KnzDy3FVGOC1OyHQ4ln66XMT2Y1a/J7SFgoEeKGTQkaLe3q8ZJezt+E+wUiwBbDH8R5MzN4TzklQSDjdlE5KM4nao229uLfkZPTzwOdVlmuxUKIIKzrcEgPIAej4qwTU7iOZw5g/7U2gqg3NWFzxcWAG4YrvJ6EQJdWMC5z5/XStBMix8dRZ9Np+EBod7Qs88i3EOvzcQE+sXdd+M4mzfjfpBgW6sB0PMai0Uca3IS4Kpcxv9Mryfwbm9HmyOR9esbxq5dMyEhY9escYLv6cH/5K50dupgOzenngS6vR96CJPSd78r8gu/oETZw4dR8HBkBADjHe/AdnNzCMPUalqb58ABuL2nprD6fPhhlSFfXkb83ppJ1NysYZnubhVmo+dkchIDe1eXggcqo8ZiKsfOcEwwqNL7zOiIxzFxFgpa2yeXwwRCb4dVCI7ZLm1tGrLi5Gsl75LbwMJ1TJ22piXzHjM7h2nR9MoQaDFtlzyZ9TKGo/jc6XGiYFww2FgniWRVepAow18oaOo3vXdst9+P43R2og/xmlMpFaSjyB6BAdVved+ZZdXTozWjWF2cnBMel6nXfX3Yj543pkCTl8Swld+P4y0sKP+IZQSGhuAJJPk1nYZXhJ7C7dvRh6iA63bj+u+8E8f/p38CgGJWWjCoIcpnn0W/P3AAHJhQSMM/y8tKvqU+TSqlGkMiJsX5RjTDYTF23Zs1lTmXwwAbiWDgt5JtuVrr6MDkffgwButQSOS++7DtuXO6Ym5uxsRw6BA+P3YME8q5cxiYe3ux+iXJ9vnntXje1BTASq2GVejOnZqKTEIlNVLGx+HRWVnRcEEmo3otzGghZ8FmA6BhUUKvFyBlbAxAg6CAGTFcdW/YoNklyST2sdYColeEKb7kW5DTQV4MV/5MxeXkToVWlwv3lDVjCK4IbsgNoRbJegvHsXzA2lpADPWQbLu6qgAtnVahO7affBtrWC+fx//kd2Qy6o2ih6VQwH6RiNYtisXgpUgmcV4RAEmbDd6FDRsABKwaN/Pzqp3j8ahXQgTf8xmx+nNPD8A6AYWVaDwzg/6STCKk8/jjjUUYd+1SEHfTTVozq7tbq1eTl/XQQ/j7xAkcY88evHNnzsB7+b734R7feqsCFsrzU1COXhYR5bKcO6feJGM3hhnAYuy6tkIBg+mWLfh/rXeFxeFYmVkEg+Ozz2LfH/1I5JZb4MoeG8Oqbvt2xOiffFLkAx+AS/vwYZzj2DGEaEiOjcfxQ4n6XA4TFlfb4+OYGPfsUVIlMzSssvdMZ67XtfIxJ4zVVZyruRntYtG6I0cAkvJ5zdRgIUNWHI5ENGuIYnMUkWM4hmq6LS04/5kzCPMwfbu5GX9bU39dLpwjEtHQEdObs1nNSOG29Ebw3AQQ/H69jHwZnt+qbcLQHIEJQ0DNzQANTU24lkQC984qdsfMHlY5Xl3VWk29vQB6JBiTYJvLKSDs6cH9DwaVWBuPq4otCbT1OsDLHXdgn1wOoZfFRQUpgQDayXBOOAwwRGG8TEYVkkMhrX20ugouE9OSH3tMPUQMYw0N4di33AIwHI/jXZmZwXXefDP+Hh1FWOib38T13XYb9n/iCdxfpjrb7VqjaHERQJ7vaT6PUFhPj4YiT58GQdfYjWEGsBi7ru3UKQAJTrpTU1iVuVy6cjt9WoXiOPk++qimiG7ahH2ffhqD6tAQCrm97304xo9+hM/m5jDoLyzocRcX1fOxuAhX+enTmGTSaWQPvfWtChQ42dHbk0jg3KEQJqlCAccOBrGibmvTFOdKBef+0Y/g2fF4sGodHta0ZIdDJ53JSV2V22wajiIxluTQYhGTSDqNtnR3q5eA4QNm0BCwcMXOcBP5L01NOEdnJ1bPuZwSg0U044STIr0t62Uc1RgCEtFrYMiNEvqxGJ4hQYzTiWsm34ZeFSvwZK0eelJSKXzOYoQsJEnvDCtYk6PicuF59/Vh0qZWCr1ws7MA12Nj6AeHDsGb4XIpEXpqSrOKlpZwvyMRTUFvb8c1sGK0lVeUTqOf7NunHrPFRZx/wwYA7gMH8Bz7+zXLZ3gY/XzXLnhgnnwS59i/X+R//S9c/5YtWsZizx68Z8PDF4aFWL8oHMY7Zrerl+XECSwg1rOPGLt6zAAWY9etrRWZmp/HYEzNCaZlWsNB0SgG/6NHMRkwTfnkSawKt28Hp2XbNmz7jW/oyjufx+Tf3Y106Hwe+5Lv8cADyJyga/3ECaR7ut2qz8JVvQgmlqEhrFoTCaxYRbQ2UGenZrOMjCiHpqcH2jC9vTiH3Y5Jke2gx4WCZEyLZkYQgU2hoLwG8k1IRiWQsGYHVasqGifSKMJG9Vfuz+wbAhtWdKYoGsEANVHWywiUCgVNb2aGF6+NPBdyclhbKZPBPePkbi1WWS5fmAJNMEaPDStW09NlBWgOh6q80tPE+lZ+P55xIACA0d+PEODf/Z0KE27dqmq3IqrR0tuL4zKFescOABryhQKBRj2aZ59Fv6QXZHoanK3HHgOwuPtuePI2bkRfb2rC+0DV3tFRgOaBAXhTNm4EMPnrv8Z1Dw4iJMqw2X33qceQxPPubl1cFIsAORs34h6lUng/rBmAxq5fM4DF2HVrExMqQlWtIuY9PKzqrpTdz2ZVBCsUQgpmMokBnVosN90ET8gPf4jBdfdupGUWi6hMOzaGVWAohKrMgQAmtWQS29x6Kwbgp57CwJ5MaiHDTZtUVZW1hCYnsd/UFLYLhTDJiGClXSoBTExM4BqKRVzDrl0qDkdCLTVPqGBLvRCSQen5oNeFuivU6WB4iKESpuuurCiIYQiFMvfUNeFETdDByZ9AhCRdt1vDMWu9LFZ13NfaCAZEcE6mJvOaCgXVh7GSgAkuRBr3twqdWdO0AwE842xWOUHM5CFIpWetrw99hNlKJHBTJyedBvhknaNgUDVdslk8v9FR5bL09wPgdHRgck+nNRQ4MYHztrdrfSFmO+Xz6FtnzqCvtbRo/3zLWxAGPXcO4aBYDPsMDqpu0K5dCE8tLIi85z3oEyMj8KxEIiJ/8RcIGSUS6rG7+268c/SyLC3hONQYooaRw6FFSQ359sYxo8Ni7Lq1VApuaxEMfKGQKnNSjGxxEYN1vY7vYzEM6sxm4cr73nuxQrTb4fV48kkc821vA6hYWIDH4/BhJQiSTLl9Oyaaf/gHDYmUyzjfjh1Y+WazSno8fx4Dc0sLBvTZWbSLeiBHjqg+C1OMDxxQLY0nnoCbPRjEBFIoYNW6uooJql7HsahaSsn9QkG9AZx4yWVIp9Fu1i1yOgGkWlpwH+mtYSiFvJRyGeCIGUWcwAkEqNtCLwXBETVayPNYL+NzJtiil4xAht4eVrEm8CJxmCE0EfUykSRMkFOpYJJliDEU0npK9G4Vi7g/y8vIKmNqvc8HsEPgOD8PoNnRgXvf3Iz7S0LwHXfgs3weRNmZGXjdxseVXN3aqiqyGzein5DkS/0Tkp1bWhAOeuYZtDkUgpdw2zZ4cZxOeDEZmhwfx/49Pdjn/e8X+f73Rb71LZGf/3mtFu104hjj4/CgUNfn1CkFIrzPhYK2mZ6YkRHNNuJ7y3pDxowZD4uxa8pIguztVZVbxrpJ4qN4FxU+o1HwP1ZWtDJuJoOB3aoJkUiI/OQnqB+0sgKAsG2byE9/Ctc304ZDIfyEw+C/jIyI/NIvAezs3AmvzdNPq/bE1BTAgwgGaqaBNjXhnCTy2u1aZyYSwXYTExj8YzFdyddqKsXO9NzV1cbwB9Vu6VlwuwHI6PVwufBDLRWG1JgpVSwqCCQQYeYKPSvUHGGVYYZLmHIrguPmcjgHuTNMc15vI8lUpLFaMwX+6JGiN4R6JQwJ0ZvEcBYzngi0mIlEFdqFBa2wzareDLvNzGgxQIb7nM5G5V3yUcgtcrtxLwnwGEY5cEDrGs3Ooo/wesihYYp0qaRE7nod/djrxT5vfjM+e+ghAIdqFX3+D/5AK1hnMnjfdu/GNfh8qs3yy7+M0GmhgHDS4iKO0dkp8v/+v/A+5nK4rlwOmkYeD66NIn3kthCkzM5qoUWGV42X5fo3ExIydl2alYxn5a6IaDhobExrojQ3YwL49rc1M8Ptxirx7W9v5BT84AdYLabTSMvcsAFhoD174Lo+dw5hHk5UCwsg8T74IH4PDsJzQn0WlwuTQ1ubiq81NenKmR4fpgwHAgBBJIFSEdYaPqGQGUMymQw+b2nRtGiqrHJyZkgjkVBRL9bOIdGXhSG5Imb4hOEP1j0imZSTPbkeBEDVqhZv5CRJLgtDQ3w2663DwgwdejHogSKIYZVjXiPBBLk5VLal+J5VrZXbks8TDCqJlNwkXjdBRFOTgkmK0FFsze3W7B5mcVGLhcCDbXY40Od9PgXcy8tKMK7VcD6/XzV2mLHEjDF62B54AM/rsccAZqamsAj4yEdwzGQS15rLgZd15AgANYHb+9+Pd4vpy1SPPn8eIISApakJxz94sJF8u2OHFmZkMc/Tp5WfNjICrw5T5Y1dn2YAi7HrznI5gJSNG/H/Sy+pbgTJti4XBlwr2faZZ7A6FMFgSUXbtjaEXeJxpHk+8ABAyLPPYpJhFsXKCtKa9+zRuigiEIv7hV/Adg6HyO23AyydPAkPULmsoRvW4+FKnBobrKIsgkF+fFwn80wG19HerqENCpARIAQC+J9KphQiY8HEUkkLH+ZymKiowULPSSaj5QaYxsyJmOBGRCduZswQAHAyJDeGEy29KeR2UDvGqh67XsZQFIXcqlUVx2OtKdbL4XdWjwcJyCxdQK+FiLaduiQOB0BFsYjtmEHE0guplE7a9FgFAgpGk0nsT7VdetAIkFj/ySrNz3AKawUND6OvLy1pgUq/H20dHEQfJvFWBKAgGoVH461vRb9jpt2xY9j/5puVQL20hP3uvRdgnm3yeuGR/NGPsM+ddwJkOBxIvd+2De0Oh3Ef3vte9Q4xJZx1hRgyYh2t9nbc04kJlS8wdn2aASzGrjsbHcVqy+tV1U9O9hzwuLrlxOF0wvsRCKgGysQEVnYsPHjuHAbd48cxaMdi2G9oCJPL889jQuCg3dKCAfrOO/H90hJWhE4nwNG+fUg/pnonJ6vz53FsKnxSJ4UDd1cXgM65cxjUySOp1/E3NVf8fuzLgnT0uIggZECAQnDA1GWmWJO7Qdd8WxsmysVFHNvnw08up/wOa6VnKv4ye4jpv9msqtuyKCKzlBj2yuc1ZXo9q/LSE9Haqu1jiIVaKtSCCQa1qCOvQQT3hJwoep1sNhWZc7uVY+Jw4PlNTuI6rfctl8OxQiElVmcymjlEbxq9NwSEVDMm94a/ycHKZAAIKFK4vIw2trbq9fJYW7aoWi09fNYq0jt2ALSLoO3HjsGLQ95MXx/6byAAYu5TTwGAdHXhOG99K3gqMzNYRGQyAEWbN6PPb9qEaxweBpmd4aNkEh5TK/l2bSjo9Gnsv57FMo29sWZIt8auKyM3g/LdLEooonwNEQUE1Som4mPHlGgZiwHU0LOxsIDV3C/8AmL38XijBkoohDBRJIKVaLWKCeeFF5AKXSiox6etTeTHP4YexciIqpr29QHELC9jAqpU8HkggOPyGmIxfPfsszj3pk2YiNrb8TM2prwbpjBTe4WciXBYs1yKRRBCX3pJvTnUBaFngLWIFhfVxX/mDPYjV0ZEPQ4MXVh1SqwpzZxsrDWI/H5cJ6tG0xNhFXVbD2OWU1OTkluzWRVmS6cbqy/TU0R+CcMzTIPO5zWbiveFtYdY4HJqSonfi4s4FzOLCIJqNfSXgQGAJ7sdYZ1kEsenkBwVj6nWWywCCFO0MJ0GeD9yBH0yHAbA6OqCt2RyEtv5/TjPY4/h/Hv2aMFBnw/tn5rCtvv3A9xzu5MnVeTu9Gm0e3oaYVJK95Mr9qMfQdq/qQnvRziMtiwva/XpUAj/p9M4Bz1a2Wwj+ZbaQYkEjkOye1/f+vUXY9eGGQ+LsWvCZmZ0gmB13e5ufGdVzJyZweBHF/+pU1qgLxZr1CM5eVLk134N2iyTk5hYmpsxQLa2YhAmT4ETtBV4zMwgo+Lmm5Ex0dOjtWAmJzEBUViN8fn2dmQg0bOzsKDponNzmiVSq+F4tRq2i0YxwUxMYNuNG7FapaR6Po+JeHoax6S6Kkm85NDU62gjuSoeD1bOrETd3KwCctRjYcE/TtoMATFzyKrfQkIvOSMijWnQPCdTn9fLCCp4HxjeWVsOgFlUDJVY92WKtrV+EjV+GG7LZDRzLBIB+GhtRX+j6J7fr89ndRXPiAUHfT48S2YlhcN4/gsL8PjlcgAiLS3Yr61Ns5GWlrD/mTP43dWFZ9vSAhDV04OMohMncD0UuKOHqbsb++3YAS/izp0AUl/9KvpbKIRzkIdFQiw9NqGQEtHzebRzzx6A/85O9L0nnwQJPZvFPrEYvELDw2hLIoHj9/U1km/rdVw/Af2JE2jnenrljL1xZjwsxq4bq9exAqVU98KCDmQ0mw3bkFTp9WKAXVrCIEhVUHpHlpYw+J47hwGf5EQO4ocPYzBuaVFCa6GgOhbJJEJGN92EzCK3GxPVxATOS+7EzTdjIqhUcPxAAECJXohaDYAhFMJk0d+Pic/vx6qW3IPxcYAAgo9wGBPY1BS2YXaPx4Nr6e3Fb78fbZqaUqDFiZYTdTiMSZOpu1R3ZUiNsv8EIkyRzmZVzZYeCoIhHp/ZRQQMNB57vYwhKRpBC8Mg/AkE0D8oZkeCLgnLlPinV4geF3JhKPbG0Mr589jG79f0ZabwOhzgk2zYoOTXWg2hToanmprw7Do78UxSKUzkExOayTM9jbDKjh14FxwOAAGmzROEnjyJtt19t4LFqSn0q9lZXAdDkDfdBFBQKol8+MMiX/iCcmr8fjxP8njOncM9PXAA+7MPjY4qufbYMZyvp0cJxgx7kaNTq+GdjMdxXeEwAAwLODY3a9V1pjibKs43thnAYuyqNxILbTZ4OCi3L4LJurVVB0EO6qyYy4q7uZwSXFdXFaQcOYJ9AgH9OXkSA+6WLTpBs+ouuQ9NTZgIfvxjDMh33w0SbiymRQb371cNCxJdczl1w6+uoq3kWQwNYcI4fRrHEcH1csVcLutxvvOdxsmV15jJKEn3hRfQZlZ0pn5Mb68SKclzCYVwbzIZ3CcqjhaLuhKOxdDmRKJRdI0ZQVRUJX+DYMfqraFEPQXs1suqVVwXPT7WQnokD4soMZhAjmEkEpvJQerqwnUx48vhAFjgPWRV5I4OXBtF2xYXNZMrnYbHweHAd4GAChky1FmrIYz33HMIC27cqATbbBagIhTCcUgGHhjQDKxSCZ6/pibsz35L3ZhKBWCfxN2pKQULAwNKCP/lX0ZFZoZ1wmHcz8VFCMo99hj2v+su7Le4CAB1/Lhyv2o17Dc2BpA2PY1zT07ielgqwuXCO876X7QNG3AvWlvx3eioASw3upmQkLGr3s6excrU5cIAZvWuWJVtUymtzRMIgDsSiWDwZziluxsD6ZEjysnYvx+T8OAg3NlHj6r72efT9ONiEYPz88+L/NZvqXz/jh3QXZmbw+SzvIzJgp4OFjiMRqG2e+4cvqOr/447AFgWFzG4Ly3hGHY7vDNMbbXZ0G5yIxiCcTpxPKZEp1I4JyXcmdFCITuGpvr7sR8F0ETQjoUFTGQiWq2YngJ6JhguIYBjdhHTb5kpRHIt7yVrOtGTs15GsqlVB4YeF3JwyEehDgpDWyS2UneGeiokFNPT0taGyZnnoDZPLqfPksTkSATP2ukEyKZooMOhfXJpSdPSSyXVtenrQwiFlY7PnlUeFEN+Gzbg/D/9KQDBygqeqc+H9H0W5MxkFESdPYvrbW7GdvfeC7DDGlesgB4Oa4HG7dsBPEIhvCetrSL33IP76vGA0/Xcc7gmtxvvAbN8lpbAcxkdBdChThALiA4NNZJvRdSz1Nqq4nUkoxu7fsxkCRm7Lowr+sFBXRWSfMfQRjiMCbZQwOArgknn8cexQn32WUwup05hAB0dxcRz+rTIRz+KATgYxHbz85jMKci2vIzBMpMBX+Xxx5ER8fzzOBYzfY4cwd/z84jRM321v1/rvRSLuI4tW9BmTtwUfVteBligOFdTk3o1JifVxV4oIIOCA/f0NI4tgu/pRSJ3h6EgThC8r01NSiglH2FxUSsXe72YdKy8DxJ3qd5LPgS1XqzVoAkACAJYzdkaUlkvo5Ius20oykaAxTaRj8OsLYIYphRbJfxFtFZQLof7Fo/jmgcHFQySzBwIqIAcw1GcnNvaNPV5bEyJ0QSx+bxm/pTLmOzb2wEEWlo0LToWA8iMRnGN7LfNzQqKXnoJx4hE0O94zu5u7TssdXHfffgumcS7c/QowBA9lOPjSggvFLC/xwN9lVoN4P+LX0Q/nJxEqn86rfwfEQD8bBa6LfPzyvlpb0cbrCnOIrpIsY4Fxq4vW1fA8rnPfU7+63/9rzI/Py87duyQz372s3LHHXdccvvHH39cHnzwQTl58qR0d3fLf/pP/0k+8pGPNGzz2c9+Vj7/+c/L1NSUtLe3y8///M/LZz7zGfFYfbkvYwawXJ82OanqoZfyrqRSGNA52G3ZAmDh8WAVybBFMolB8fHHAT7OnBH5t/8Wg3IyicHQbscAyhAB6xW1tyNU1NaGgXpwEKvRLVtEvvlNTBKzsyAdcpW6fTv2ZzaN36/S7/E4Bm2vF20/dUrTRMl5SCRU+OzWWzWzo6sLHAXqrwwM4B6RELu0hO+4WrfqhXi9+GEYiTVqmAHlduskSUItwyTWYoasdEx+Cjkp5KlwgicosxJ0qSmynhwWa+0jhn2sRQit4nFMJSaIspZvYAjLqk9jrTdEkDA/j23p6aI0P0X0SFy22RozYZqbdXtWHU+n1WsWjaIPh0IAEpOTqmvC/jQ3hzYNDQEgBwI478BAY6o5OUeFAo7DzJv5efV2DQ8DDKdSSgI/eRIhT4ZyxsaU10VeTFcX2hMOAwj97d+iLR0d+P/0aQUdt98OL+M99+DesNp0WxuOYyXfigAkhUI497lzaDNDaMauD1s30u3XvvY1+djHPiaf+9zn5LbbbpO//Mu/lHe84x1y6tQp6e/vv2D78fFxuf/+++U3fuM35Ktf/ar89Kc/ld/+7d+WSCQi73//+0VE5G//9m/l4x//uHz5y1+WW2+9Vc6dOye//uu/LiIif/7nf36lTTR2nRgH+oEBTKKU2l9r+bzW34lEsIpPJLASTKc1vZky4O3t0Jy47z6Rf/5nze6hZDsnaXoZajWcv1TS7KTxcYRyvvQlDKwLCzjf2bOYUPbuxWp5715VTyUAGh3VsMHkJFbBXV1YpTY1KXjZsAE6Fna7xvgpHMbJSgTHYPusIQ6/H22gi93jwb2KxXCPKElPbZB8Hu1kGIrcDgqgMfOH2jEENfS2UMyOvA+rCBufJ+8h1VbXy6wKsszssWYL0eNjDfMQtFhLD5CDQ6+QtWq106mKxczwqVS0oKAIJlmmL7M0QTyOe59MKg+ImjHd3eoFCQbhZensxHZbtoAwznT15WV89qY34ZxnzgBM9PQgHLiygn39fk3hrlQADggGRkfxXpw7B4Bx6pSmynMx0NEBrtadd6LtO3cCMJPT0tsL0LNrF44ngnvd2Qmwwww39pXxcX0PDh3CNvQqlUqN5FsRvP8nT2poKJk0gOVGtSv2sNxyyy2yf/9++fznP/+zz7Zt2ybvfe975TOf+cwF2/9f/9f/Jd/+9rfl9OnTP/vsIx/5iBw7dkyefvppERH5D//hP8jp06flhz/84c+2+Y//8T/K4cOH5YknnrisdhkPy/Vni4uYPDo7QebbuVMH2pUVVXNlcbd0Gqu4Z57B98UiBtJAAANxfz8yenbuxDZdXRjcSyXlfuzciYnA58OAmclgkH3mGbjIW1ow0W3disJvzIzxelVr4+BBDPi9vSrwxZDAyIjqUFCgjWq45B709yvhd24O7WNq7OqqholyOc1GofhbpYK2hMP4oXeBNWHoxqcoHPVg3G5cP7kyTqeGMur1Rkl5KzFSRPksBJgkgHIiJufFWpPH620kwr7WRpE6eqHWZviwnAC9PfR68H5ZwRRBmNXLRFBbKCipmeJ7JCkz6ywcxvYkATscuD+Li6pwW68riCF4ttvhTaDOjseD4/b347nPzGAir9c1uyyRQJ9niQSXC0CaYSoSdWdmsM3RowDZO3fCCzI0hD74lrfgeuNx9R66XADQFMY7cwbbv/ACjl+tAqD/8IcI+4yN4XzDw6qDtHs32ve2t+H7u+/WitVMyWZVZ2tYaGJCS0OcOaMZg8auD1sXD0upVJIXXnhBPv7xjzd8fu+998pTTz110X2efvppuffeexs+u+++++RLX/qSlMtlaWpqkttvv12++tWvyuHDh+XgwYMyNjYmDz/8sPzar/3aJdtSLBalyMC94IKNXV+WSmHAXlpSzgeNxMClJRUhowdicREg4Ac/ACg5eRID3coKfo+OIlxz7BgG6qefxoC6bx8mc+qwrKzg82efxcDc1ITzRiJQ+iQRU0Q5EXfeqdLzLBFgswFgLCzguG1tOlF5vcj8sNng+bn1VlzH0aPYvq0N5zh5UrkomQz+3rRJr5sp06zsTBXbWg0u+8VF3CumRtvt6jkZH8cEGAzq5Orz6XXUairDzsmVWhkURaN6LUmqVs0WemrIBWHYaj2NhQCpTut249kzdGXVVmGYzFpB2eFo9LaRy8LrZ0YWuS8Uc6NuS1cXjhWPAxD4/QAvrIRdq2Hyd7vR53g/Vlc1LXxlBcCCareBAJ75+fO4vltuQT9mav7iomZmZTLoF3Y7wIbHg/+LRYB31tg6eBDnPX0a78zsLJ774cNIdW5vRz9k+vPkJDweiQRA+/nzCIOOjOAenTypejCJBN6bkyfhBVpa0tpKy8u4j1NTADEvvaQie0ynJhgUwfnPnFHwls8bL8uNaFcEWGKxmFSrVYlaoa+IRKNRWVhYuOg+CwsLF92+UqlILBaTrq4u+eAHPyjLy8ty++23S71el0qlIr/1W791ATCy2mc+8xn5oz/6oytpvrFryKzci6UlEFlpVmVbZqI4HBgcX3oJnzNsQi5CZyeAx8AACLIkLj79tKZsrq7C49LaikHabge5lhM8eReJBFZ8+Tz+9/sxMb3lLaqym0rhM06OIlgFs3JuIKCgZWBAXfcnTkCwzu/HNqOjaM/wMAbsahV/b92KyYtET4YR5uZUzfX4cUx4Doem5FKKvqsLk1G5jHNTCI2eFKac1mpac8iqo8Efat6Q7MmwEGXtCVboYRJRL8d60/2ZSUWSrVX91poBRCDF62SozMrJcbm0PAK9LKwRZU2dXl5Wrw5F/kTw2XPPIR3Y68Uk3dOjQOLgQS0myUy3l15S5eHubg2xhEIAVw8/rMD1zW8GmKA4HcNQxaJ60Aiw6Vm57TZ4O26+Gc99bg79jiG706fx3rW1aebb2bOq1lsoAEgkk+jbLJbodOLau7r0/3Qa7ZmcxIJgdBQE3dlZJaGT77Oygv+pfMtnSfXb5mZcowEsN569KtqbbY3cYL1ev+CzV9re+vljjz0mn/70p+Vzn/uc3HLLLTI6Oiof/ehHpaurS/7wD//wosf8xCc+IQ8++ODP/k+lUtJntJuvG2M9IHJXrCmwKysY9FZWMMCJYPItlTAAdnRgsPV48D8zcXw+DJytrVgZ1moYcEslVcft6FBX9pNP4tzMiuGgf+QIjtferimzd96p6cNNTTjGxo2YLKamtCo0i7n19WHAtttxjBdewPU4HEoqzGQwOFNGfvt2TFwdHZh0EgkAlmPHtFoveSacRPbs0SyZQKCxgnI6jf0mJjDhViqqOZNKKQeEGR5WrwQ1YKgUWy4rACuXlbxKYEANEJJx2Yb1MgrfkUBLXRgCKiuAIRilZykcxjEoFscqzFS0ZR2npiYAg3IZxy6VtCBlZ6emxvOeJJOavXXmjIoZ0gvl8WDyHhzEsbZtA5glR4mkV3p5+N2TT2LfoSH0kUIB5zlyBM9v82a0PZtFn/X78f0zz0D8bXERRNjvf1/DYi6XhoEYCk2n0f+SSbR/wwaAmUAA7W9pwf7nz+MeRaMAWPQC7dqF9m7Zgt8ULhwbAwgfHUWftoYKrYKDrMS+cSO8gqzSbuzGsSsCLO3t7eJwOC7wpiwtLV3gRaF1dnZedHun0ylt/8Kq+sM//EP5lV/5Ffnwhz8sIiK7du2SbDYrv/mbvymf/OQnxX4Rdp7b7RY32W/GrjvLZjGYLy5qdea1ViphVRiNYpIhCCFA2bRJi7ixcNv4OLwThw9jIMznMYCWShjMJycxoD/5pOpcMHW3VII7PRbDthT8GhrSSc/hgJeEdX3yebQ/ncaKeds2kY9/HDVbvv99eI+amzH5bNmimRDJpGbVsOAhU5m//31cj8uFCaOjA5NCsagAbc8eTC7NzWjn/LwWAVxYwLUEAljlb9qE+0yPgdOJdszOqleFXhIr4GDqr4hK7VtTmgkAAgElLzP12VrFeT2M5GPWVWJqNrk8+bwCTIauqN3C62M4ycpZodeGmWushl2pqFrw7CwAKGtBUbGV4bhoFM9idhYTdHs7gG2lgvDQkSPoLx6PyDvfCWB74oSSfMlHKZXwnJubATqnp+Ex9HoBev7dv8NzfeghbLNjh/Yr1uU6dw6gfW4O5/qnf8KzTyRwPiok+3xaHZpZbLOzuJ979+L89PJ5PHh/R0dVfJAAOZvVjL54HH1jYUGl/imYmM9fSL5l/atUSvufKYh4Y9kVARaXyyUHDhyQRx99VN73vvf97PNHH31U3vOe91x0n0OHDsl3vvOdhs8eeeQRuemmm6TpX3pbLpe7AJQ4HA6p1+tyncjEGLsCq9cxEDIsYh2UWESNMvnMDmLBObsdg3oohIEwlcJgS88DK9tSzXTTJuV/JBL47MgRDIx0pbOq85kzmPjDYQ3DkJzb1IQBdHKykROxvIz4vtcLAa+REZHf/30cd3AQPASPB9f10kvq5aAGCMXf0mmAnNVV7PPWt2LgJyhi+Om227A/5dCZbeJw4PpKJUxcTU1o28wMJsPWVgWA9JpQc0VEQztWwirDK/QiME3amkZMjROr0euxnmnNBFhrgRHDVgQeDPORt8K0ZXKFuA+vlSBnfFyPEY2irzz/PPbt69Mwx8gI+iUJznwOLS3av5aW8JnLhWfD9HOnU+SRR1QThdWeT53SZ/D889g+EgFPpFrFcz1zRuT/+X/Qd+68E8/1uefQ3nAYoP3IEQVTfj9A8D33gJjOEE2hAOCxezfa2NGhpQAWFtDOw4eR7XP+PLwus7M4ZjyO/QjwFxZ08XD77bg3t9+O446P4xqGhgCS+vqw7VqCdziMayHHrKNj/fqQsavPrnjIePDBB+VXfuVX5KabbpJDhw7JF7/4RZmamvqZrsonPvEJmZ2dla985Ssigoyg//E//oc8+OCD8hu/8Rvy9NNPy5e+9CX5u7/7u58d84EHHpA/+7M/k3379v0sJPSHf/iH8u53v1sc6+k3NnZVWjKJgTSVaswUEFGyLZVEd+7EIHz+PCaStjaofQ4P4zcJrpSi7+8Ht4Opt1YxtdFRJU5apcMdDqxeJyawH3kbtRo8JsmkhkSqVQz+fX0iX/86JobOToCX739fU02HhnD+uTlN8xwc1Dh+vQ5gEovhx+fDarqlRbkmJLyWSgAlDF+QsMgVu8ulKbf5PCYYkoWbm3F9p05hYm9tVeXU/v7GVGBqqlA0jeegTol18qcxLZqEXAKetZk4r7UxTMOQD7lGVg8Qr4c6PSRvrw2D0ZFrLeBIpViK7c3OqoT8mTPYnv2EIZNEAj8UUPN4lBhNuX9W5Pb58Pm+fdh/agrbZrPgu1ANORTSdPxHH8X/mzbB6zE7i771j/8IADUwoCnRbjeUbR95RLVh6PXYuxf9gTyYlRWEWPfuxfcsfxEMAuzu3g3Pzs03K2l9eRn3nEUa29oU/NObxxpFrGC+caPqxYhomMxKvmV6tM2mxGJjN45dMWD5wAc+IPF4XP74j/9Y5ufnZefOnfLwww/LwMCAiIjMz8/LFHW9RWRwcFAefvhh+b3f+z35n//zf0p3d7f8xV/8xc80WEREPvWpT4nNZpNPfepTMjs7K5FIRB544AH59Kc//RpcorFrzayaEX6/fk6OQL2uabOVipL4CgXNZqlW4T1g7Zd8XtOVOcCTD+DxgAwpgkGwtxff0Z2dyWAA57E9HkxuBw9igGYWXj6Pdt9+u8h//s9YLW/YgEnizBm08/77MRGcPq2Twl13KafB68W5e3tVZbenB5MYZe3TaZAm83m0jxkphYIK5YVCytGgaioVUakbw5pHTicmneFhTHZUDo7FlHjK8AqzPHy+Rm8EiwTyb2vF47Y2TJYEgCJKRl0vY/iJ4Ikp19ms9h1eF0nDVkItvSokHosoUbhYxLW8//34nunFFGNjUcVAAJ4FSvFTNC+ZxDHGx9EOFthsatKq4awhNTyM82/ZguM4ndiP2iazswD2xSI8LPm81q666SZ44l58Ed6VYBBAOhgEUCHx9tlncdxAAH0kl2vMGHI60Z7nnkN4qlLBdZ0/D0D17LPo6y+8gP+Xl9Xzdv68qgCTBO/zwbuycyfe223b0Kfn5nAuhijpObKSb0XwHhB8rzfwNXZ1mZHmN3bV2enTGJSczkYPC7UZYjH87fcrf+DMGWw/NoYJ8uxZAIJoVImxDod6SWo1cDz27kX9IE5ig4O64oxGMUjT/U/AYLdjkF1YwMDtcqmmxgMPiPy3/4aVX0+PVoE+cAATAtOVazW0o1xGmGfDBkxmfX0qmc8Jll4Bnw/XPjWFSbKnR4tCsuig06kquZx4V1dVop/ZV+3t+uN24zznzuG4VAggMCOxmeJwFGOjp0JEQzA0q8osuSEkvRIEredEQ5BBD5C1ejO1UNxuXa1bw1QEXQyrkQNDgEOnL1NrOzowyXZ1YTtOvqmUhjap59PWpkCYSrc2G+5/PK7FOmdn0Q96ekCaZUYaS0cwvb5cBkBgCrQIng2BVTiMPrVvHzx8FMtLp+GB/MVfxP+LiyqUyL5XqWiatQj2DQTg6SMf6vRpXPfRo2hPd7d6XpiBtWkT3qG+PngWJyfx+Qc/iP3f9CZce3c3QEwyib7Y3Y33YmlJ5QFE8GzOndOsrfb29etHxl4fM7WEjF2TlsmotgoLHtIIWM6exWSwcSMGx9OnMQj29gJ8bN0q8vd/jwFu1y6sfqenEeIYH1ePSDisk0owiGOXSpgkOjtFvv1t5RbQS0PRLoZ2SPAtlQB+vvtdHG/LFgzuGzZg+7ExTEIimLRCIfUedXRgIqLOSj6vVZgZKqhWcZ30inCCtNnwOWvXkE8SCOgkFw7jmjkhMiOIHiyK35EMyuwf6sSQ/1Mq4brjcUxo1hpDIjqRU9mXPB6rl4NeGB5/Pc0qVmdNcc7l9Me6Qifnhf9T6ZbAgmCGK3sR3BvWgSoUlHhaqeDa6Uni5Do721iXKJfD+fJ57NPZiX49NYUfhvgGBjAxWyuQr6wogOR21PyhOnI8ruGXwUH0tYkJvC82G0I5//E/Kr+luVlDYwQ39TraTXFEmw1p1MEgPl9Zwd/nzuG7gQGtY8VsLb8f7a/XcS/OnoW3kYRshsH27ME9i8WUpOz14pqsVdpZyNPvx/tq7No2A1iMXZO2tIQB0OfTIociAA6BQGOtnEgEg9qJE1o3J53G77//e3g1lpZURZTZISTFzs9jsKdGSakEQBIMgni4tKRS7CsrcLGvrirhlrLq5TIG4aUlZCXdeqvqXTidWo+otRXXwNVrva7ck0gE2zKFdnUV54hG8dnp0xjEi0WAME64DgfAC7OBWBDS68VgnkhgtV8s6qRBz1QqpXoWoRAmSCswYciHk7g1JGZVfbWGjOipoFeFwIgTvPX361GtWaSxjhG5NiJaUoDcFAIWkYt7WUgAJfgJBpWUHI0qT8rvx/0kETmR0Irf7e0AJfR82Wz6rGw2gAkCEfap6Wm8C+3tCBHF4xo+CYUUqLCvU2lYRL1qFJVLJhuvr1JBn/3d3wW3SUQrNVOpmECTXCsWjLzvPlz3iRO4ls5OeDpnZxFiZAgrmQSAP38e2xw8CDXcri54JF96Cceam8NnAwNaQdzhgDdzrfJtIqFZR9u2rW/GmbH1t3WrJWTM2HpaKqVS6VajZ4CqoZ2dGAxnZjTm/v3vYzL/1rfwXXc3vp+dhSs6Hsegn83iHDMzGDyjUQzCPT049tGjKunPbJo778RnPp+SLqmVwlovhw+LvOMdOF+5jMmivR3X1NqK/bJZJXESFBC8uN04Xiik9XxeeAFAwunEYN7Zif16evC9y4X2nTqFwZ0p0GfP4nxtbeAX9PaqsFk8jomHK/mFBUwqnZ2acnrbbbh/TqemkDILqFhU7RV6qKyZQQQvzBISaUyDfj1SUkm6JYBiRpCI8luY8UNNGIIQa6Vqetes+jMEwKdOYSINBFT9tqcHP1SwdbsxobLA3/Q0+BuZDECq349+xdpHnZ1KhF5awrH37tVw3YkT4Eht345nMTWlqeLptIY2ycuhR4vcFIYXqUhLnZWvfAVpzbOzWmTT4UBfiUTwvAcGAKjo6XjiCdTT6uvDcefnEb6am4MHh/pJlQr6LAnMIyPwgj79NM4ZDquHiiCcpHBmAq4l3zIF2uUCWGptXb++ZOzqMQNYjF01Rm0JxvppJNumUjrwMuODrvSFBSUIHj2KDIiREZ2E0mlMtMwcGRnB3xs2aHinUlF3ObMRYjH1rLS1YUDnhLKyAhf25CTUad/1LhzX5UKbczlMGD092k4SKkslTBjhsAqFjY0BcA0M4HoefhhtIL+lUsE9oD4NQdDgIMDF6iomsdZWuOytuisEDwSDx4/rBMs0aKcTXIdiEStlgiBr1WarxordDnDT14dzMcWa12n1aljTmDnprCeHhX5jyumTHMzMIH5PzxHDZMmkcodSKVX6JZGYHoxyGUB3/34VA6S+CXVUolE8GxaJ7OiAh4SEZYYy6eHz+RQUkrjKyZ51qVgqYvdupBL39yt/a+tW9VCOj2u9reZmtJ0hx8VFJeyGQgAsKysg527bhr8zGU3Zn5uDF89mQzumpzVT6JlnQOx1ONCfczkAHBZTTCTQx2IxXPv4OK739ttxHU89pSnON9+M7aemVJCupQXH2r27kXxrs+E7Ah1jN4YZwGLsqjEKQjGdkkZl2+PHMQFQh3BmRuX0jx7F78cew+DZ3Y1BMB7HgDwyggE0lcLqc2kJ26ysaNG4tjZMIk1NWg9n1y60pb0dA+zOnVhJhkIYYI8fh0v7zjuVCDg2poq0Xi8moFxOpc+7ugAMOju1WODCAtKYz58X+R//A+fo6tLJzm5vVONlimilggG+vx9t6+rSOjSrq2hLrYbr5are5cLEw/o+JOxmMjiWiIZKyMFgqMRKoiU3hCCQ4TNO3JzorTL4nOzXO7uDGVL8oXS+9TN6WZh6zTaTX8M2Wj01Ino8q4eMmirLy+hHfHYEDnxu5GU0N+Oeb9mC+zIzAyDAit5+PwADw5a5HM7NMMkTT6BW1u23wwPDkGc0Cm/i3r3om+fOAZj4fOjDTifaShVfgpO3vlXkO9/Bdlu24H2g9ygYRD86cADvRzSK7xnieuwx6LdMTSkJdnQUP+3turBgWQp6BffswXXce69yc+glshY29fu1XIJV+ZZcslTKqN7eKGYAi7GrxrgavpiAMTUnpqY0s6VSUY8CeSQ//CHCGRSRq9WUVNrfjxX02JiSUanAGQrBRd3cjMnD64Wnw+3G729+E5VlX3wRIZb2doRdRkcBlFIpLXh48CAmltlZvaa2NpFf+iVMWpGIKq4GAlidx2II/8TjGOAPHsR+TK9ub4e7vakJg3S1inZHImgfNTpOncKxKYLHENHmzQpA+D0n6elpDW9ls5i0WGuJnBeCC6dTPQQsCMj06lJJK1FTAp+k0HBYJ3U+l/XOErJ6U5JJXDMJ0vSAUdmXJGeCLmZBscqziN4/cn+yWQBMirFR9ZakZ8r0kxRKef4zZ7BNOKzZXlu3AnCmUujj9Gj19qqS7egogDDBSTYLEH3qFEAQJfSp4fKOd6Aq8uQk9j9xQqsml0rok0tL+PvJJ+EhfOghbLN7N96JY8dU0ffECYCW48dVXPD8ea2Qvm8f+r2I8m86OtAnurpwXmYJZTKovfXkkwBV7e3K1YnFAJIIWrq70f5NmxqVb0lKj8dxvEBg/fqTsavDDOnW2FVhJP+FQhjUaMzSWVrCKmpsDBNfPo+BLhxWCfliUeR//k+R3/xNhGhyOUwEJ05olsfKCo5Br8KhQ5hElpcxUb34osrdt7YiHPTXfw0AcfIkBuVgEOd//nktRnjqFD679VasQr1eTDZbtuB6urtxbcUiBthiEdf75JMYlCMR5ZZQCt3hwLEHBnAtiQQmvdlZtN/jUTXfdFpBG135zNAolTAJZLO4fq9XAQnDEAw1bd+O85BXw0mdHhZ6SShd39SkZNxgsFFrhd4Xa6rw2vo+62VrtVMYwmJfs5YVIPBlzSbyQOilYRiMXBfyW6pV3OdkEuDV59PwSyyG72MxrRQdieCeVyq4J0wvJogid6a7G+ehgGJrq3pdikUAhkQC7Umn0W+am9H2ZBL95R3v0IrbnZ3YhirOpRJ0WCoVHDuVwn5tbVpgcetWeDPDYYQm+/vRr3fuBLiYnQWwYlHDPXsAGoaGFDSfP4/3qL0dXplTp7Dd2bP4/5Zb8L4tLIj8wR/gum67DV6poSGAHIJLkrxFLpQ6WF7Gvb1EdRhj14AZ0q2xa8pWVjAoWYXiRHSF6/djUCW5jgqvFLXasUPkT/4EAyonI2Y3ZDIYcOfmMNBTg6VSwWqPAlWPP44Jpa0Ng+yOHSJ/+7cYPE+exP/0jhw/jmMPDwN4cNAmWAkE8N2+fZi0RkZwrngc7U0kNCVzZgaD//CwZn3QwyOi3gBrDaB0Gj+DgwpQmFoaj+v1z8zg/jHDhCEmKoXa7Vg1Nzer1H9/PyZwl6uRqEp9mrXF6XI5lXFnJo3NpuEuAgSCBmbZrHctIRENSREkWH8YYhABIOju1hRbGj1J1uuq19H/CM58PnA/fD70hXhcOR/M/KpWMYEvLmISb25WUjbVmpkuvrCA9yEQUA9YoYB+WC4DBK+u4nPWKpqYQH/o7EQf+cIXtBYWs80iEXjaFhfRV597TlODnU68H14vthsbU4G2970P78GOHQi93nOPVommxMD4OPrXyAju5eqqhmycTrSjowPvwI4d6O/PPguA/4UvaAo+M4WWlvAusNJzb6/Wf2Kmnwi2mZ9XzpCx69sMYDF2VRhXUla3LtVJQyFMQMvLGKBZYK63V1eaqRQGu3e9C0S+ahUD48mTjfVPGPJgoT+PByDou99VJViqsj76qNYY6ukBL+D8eYCCdFqrQotgRTo3p5yIfftwjBMncF6CCGaakKBYqQAwdHaq18Lv1wF+ehqeHKZ1s/AcSZorKyq3LoJ963UVsotGVUelWFRRMYcD/JxEAtdQqeCYTPvt62sU67LZ4CnweC6sAcQ05kJBCZDcj6RVPk9mglDOf72MoR6mYVPFltlAVr8ytyNQsX7H+2ZNaxbBdRCAkmuRyeC+7diBvsqwpNOp/KGmJkyw7MutreCi8F4QyLS0KAHY6QQwmJoCAfu221RobXxcBdZKJQAXpsQzdMe6Pl4v+gP5Mzt3wsNB9dnOThV4c7sRutq1CwDq538eUgGbNsEreM89ABWbN6OPLyzg2O3teD+YoUawRfG3s2fRjym/z772N38j8qEPKT+sVFKvH6ulM5RIHpoInmtnp+owrc0uNHZ9mQEsxt5wq9UwsDGtmLayouRShkBYs4c1beJxeBm+/GWVsGcBvtZWbNPdrZkyTM+kDkYoBM0VprPu3AkAwArF9O68+93gmCwsYPB1OvG7UsGKNx7XVeV73oPBdXERE1VrKwZzinAxdTWZ1Mq6FBHr7sa28ThAFPU22ts1EyMcxr1hKQICkHxeizP292MiCAS09lCppPuWy5oivmkT7t3qKs7LlfHEhLrh6eUpFDQ12VrZmCRWpq7SgyHSCBTo3bCGaNbLCJDoZSHZV0Q1YsjFoBfI2idpLpdq9/B+kATd2orvd+7E/Zmfx4TNitc+H85Nwq3djjDj2BhA78KCqiiT88PsIBbmnJ7GOXM5hFXGxuCZ2LABffnkSSWqRyIq3Z9Oo4/x+bjd6JOxGPpHfz++e/JJLQPA8BAVk8fHcY6WFuW49PTgXSBheOtWXPPhw/DGuFxaUJEE9tlZ9PNQCNfQ24vPf/pTALCvfU3rFpHztbyM+8KUad7vyclGbwrDdKmUASzXuxnAYuwNNwKTtWTblRUMyskkBlqq3i4uYkCrVjGQMfXxXe8CcZaEveeew3YtLVhJciXtdmMwDwYxaReLGAhvvhnehp4eHJeVof/tv4UrnDoa1jo0g4P4fHERQOSBBzBojozAe7F9O7YNhwEofD5sOzGBzCIRFXwLBgFQXnxRK0Zv26Z8mJ4eeI+OHMF+Ho96XTipbtvWSDidmsK12Wy4HqYyU27d6cS5T53CZNfRoeCmu1tJ0CTiUo+EgI7hDup9kIjLLBQrICCfhGBnPas1k2xLci9DUARUBAa8b2638iTIW6GGSKGA+0WOizX7iVyh8+f1Xvn9KhRIUG23o38kEviurw8T8tat6A8sguhyAXAnk1rL6ZZb0A+PHweoTCRAAo9EENphiYdSCc/p9tvhlUsm0T+bmlQ3yOXCdTz5JDRQgkG0++mnEaJ529sAIrxezWxj8ca9e9Fnf/xjnHtlRdPzKYb33e+ChEuZgVAI1+n3a32kiQkQ2B9+GG0jR+ehh3CtiQQ+Y4FNjwf3mOKIDkejJgvJy8mkKYZ4vZsh3Rp7w218XEvRE5TUagAPnZ0YMEdHtVLxyAg+Y/rusWOYyN//fgymlQpIh//wD1gd1mpwb2ezmGDa2jDAkXAYDgNYTE6CJ7C6ilVrKCTycz+HwXdyEvtw8mlpUY2SmRlMQG9/u6Z0njyJQXlgAOCHqclHjmCA7+/HhES5cxIyf/Qj9XrYbPg7HAZQmppSF3lfH9q1vKy1hCjP39SkwlqsC9TSoumoy8sY7KnLEQjgXtBrRUJyMIh9yQViJhBTeQlY1krfizTKzxM8Edw0Na1/lhCBEfsSCcJsG0NGdnsjAGG7eE30HFmznhwOVQNOp1WorVDAPec5Obl2duKYU1MqENfWhmMxY4dCegxZbtiAfsiwkAi8OE1NeO5MAT57Flow7e3oZ5zMScIdHUVfIHeF6ezPPAMw8sADONYTT6DPrq7CA3T+PPrE7CxA2MaN6KM33QRPytNPAxzs2IHFwsaNONf8vIY2bTace2RECee3366FOMnvoZrzsWMi//f/je1vuUWfSSSila9FcN9yOVwLbW4Oxz14cH2BsLH1MUO6NXbNGOP51rpB8TgmTRZg8/kwSMViGOAqFaw4e3uxMtyyBa5y1q958knsHw4j5EM9lPZ2eEQonBWN4md+HpNEoQCg5PFAH2JlRYsNUneD7mi3GxPGjh0YKPv68P+LL2Kl6nDgbxaUGxvDxNHaiomorw8D9fbtmEAWFvA9wz1MRR4fx6TW0YGJIZdD+jZDDV1d+Jtk3NFRJSFu2qSlBQisBgZw/X6/ZsBQ1n3jRgUmk5MKMqzFDddWObaGfAhsWMOHQMFabNBaFHG9jFwcXp+1jhF/W+vckIdDOf1CAf3OataQVjCI59jRgePEYngOe/dqDR5Whia/pa1NwzLPPov9+vsxIYuoKN38PPrR8DDCJSdOoD1M6d+wAcBzfh59b24OAONNb0K/zWRU02jbNgCBfB7tPXEC17t9Oz777ncBWu64A8/o2DHwobZtAwDo7ES/nJpSr8auXdj32DG0c/du/B2J4HpHR/Ferq6ivT4f/mbRR3pZPvhBZCsxxPXMMzh3KITjs992dyspub8fz2purhGwkKsUjxvy7fVsxsNi7A01VmYdGmqsunr6tOqLLCxoRsbp0wAhtRq8FYWCyN/9HQqpHTmCQe6OO+Ay7+/HhPXCC9jO68V5zp/H5HHmDMixLS1a++XkSZz/nnuwSj1xAoN1qYTBkMXYRNDugwcxgRw4gP+ffhr6EgQa1H6ZmEAbm5owYe7cqYTc0VGtKzQ8jFTrSASk31OnEMJhiufTT6M9gQAG7HpdV6qM/W/bBmASDAIMsjKw3Y6BPhLBNcTjADYsPCeCyY6F58JhFVtjyITS9Pm8gg4Sa7myptbKWrMCnvUEKzyXdaVtPbfVyHMRUQ8RARiJuARsDHNRT4XE4c5OvaZsVsM/Xi+elduN58KyBiQzx2LoA/PzmiVDj082C2DjcKA/bNqE7ebnsd1992EiP3wYoc9MRlVme3oA4Mmp6epCX8pm0b8SCbR9eBieFZcLoGVkBO/G4cP4fs8etJ/FHik6t2cP3pmnn9Zspu3b8T4FAtif2VNuN7YdGVGi+f79AM8ENZWKemgKBZFf/VWt68WwGgE2i0uurGAfK1H6pZfQxh071rdvGXvtzRQ/NHZN2OnTGJyoKCuiwKGjAxNmLKbF/gIBTLSsevutb2ECGRoCsOHKPhbD4HrsmBY63LJFCae5HFah73qXhjUmJ3H+TZswGZw7h8/qdQzyHR0aRpmawsDY04PV4dQUVoi7dmGbM2c0hu92I1x08qS6yp99Vgs19vfDVb57N+7B978PDkJPD44xOYnznzqFgfvgQRUU48qzsxN8CK8XgzzrCxFUkDzc2qoTFrOiqBvCVTgFyMg/EdGQDvk71pRn2lpQQFE5plIzW4nbrmeWkPX4BBNU6OVq3AqqrCnO3J+ZQXa7hoLoXWIRy+VlTPK1Gp4BVV1JliYZNhbDNixh0N2N58VilQsL6G/1OoB7IoGfo0fhgejrwzPv7dU6WIGAyHvfi88WFuCtGBkBmPL50J/a29Ge3l609fhxnH90FMAjGIQ3MhQCCHr2WbwXzz2H/rllC/YfG1MV5bY2gA6vFyq35J5t3Yp2nTsHsDU8DM/djh04rwju44EDSsS97z58l0yi3z3zjMhv/Rb2u/9+JQ5v26bAharFq6t4d2iTkzjvTTetP6Hb2GtrBrAYuybs6FEMPlu36mfLyzq5VKuafXP+PAbJtjZ4ULq6RP7qr7C6i8UwmO3apZVg63UAIk66e/cCwESjGLADAQxuIhgUCXaGhuAdYfw+ncbk09aGwTuXw9+bN+OnUADA6OjA/6dOYSLavFnFuJ59VkMkLNo2PAxwNDyMe/DNb2J1WqupMii5ETMzkE/fsQMTCsMckQi2ZbrwyAj4Ls3N8FBRJM7vB7AplXD91LWJxxXw0cXOz1pbL511Ua3iXqyu4v5YPSYM+3BV7nSqF8Yqf7/ekwoLHlpDOWwDSb9WUCOiae6sS3UxUMU+SbXYpibcC9ZnoqqviGaK9fQA/KTTeH6JhPYveix8PhxzakrvUzCI39/4Bo6zcaNml7lceNZDQyIf+ABADRVxWSyxv1/T5ykENz2t4OWeewAenn8e+99+O3hg2SyOk8tp206dwvkpVLdjh9buikQAMoaHcd6nn1a+TFsbthsfx3YOB9q1sqIen2oV78mRI/hs/37003BYxfj4DFn4c3oankpaNosQVUdHY7jI2NVvBrAYu+ptZQUD6+bNWOHRTp7EIFwoKMGwUsHgnkphsJ2fx4B76hQGzmwWg5nbjUE7GMQAWixi4if5Nh7HdtPTOlHUaipAtWGD1tOhy9/Km2HYYNcurF4DAbS3WgVR8KWX0O5du3TiaWqCW9/txsq1vx+DbksL9vve91SfIhpVZdQNG+BBikRAIibgoNx9X5+mgpZKmMg2bQL4m5zUcgGsXBwI4HooOsfsDoKiuTlMUK2tCkSsNYA4UtBjU60qEdU6sdObQpE5q2eCISOCw/U0cnGY2cPMoVIJAINp5lbvCvVkRBq9SBTbY9ubmrQWVKWiHi+bDf2T8vpUv6Vnz6oC3NeHNj31lIbzHA5M0gsLqogsgj4wM4PQzsGD+H9kRKuJMyvnLW/BJL6ygp+TJ3HcLVsQGp2dxfFaWtCG48dRKHN5GeB+0ya8K8ePow8xjZ0VzsnV4bWQEEuuydmzuN5jx3AvBgawz+7dAEW8p8PDOP/qqoaeeN+XlkR+53cAmN77Xq0I3tODc1GrKRaD58UKfE+cwG8rkDF29ZsBLMauervU4HLihK7ESHRdXtZwxze/CUDz5S9jQuTj7u/HvoGAupwpUnbwIAbsaFTDPJEIBtnubri8PR7VKpmexiR0/LhyOVpacLy+PkxWkQi8PisrIEeOjGAAvvlmcAO6upBlVK1CRTebxb7Nzfjs9GlNO45EtDhdezuIwjMzIv/+36v4V0+Pyq2z+rKIekPCYRyzWFRlUNa1yeXUW0R+CifjVEqziVilOJttDJ9YAYnDoVWAOQFZ6/ZYs24IFKw//Gy9Q0IijdlL5KdYs4CsKc/06FFzhoDNOkKSVEzNFpJKGTbiBC6CZ2blplBTiMTT5WWcZ8MGPL+pKfUkiOAeM2xILsmWLSJf/7p63AIB5SlRpp7p7T09WgSTWXg7dgBM/PM/A1RXqwhf3nEH3peZGfV2rq7C48c6SQQOBAysBm7V+GlrU10jctPSaQCXVArn6OrCAsHnw3fbt6Od7BvnzyPDLhRC+IjCf14vtm9rw7m9XnhnNmzQ58N38MCB9e1fxl5bM4DF2FVvx49jILeS5JjmydTR6WkMUNT3yGSQeZPLIWbf36/F+QIBDJIsWpdKKfBoaQFQaW3Fyo2u7fvvRzsqFRX3WlwEsDl7VqvPhkI4t9uN1WFzM/aPxRBqWlrCKvfQIWRe7N+PfRIJXFcopJ6IkyfhBerowGC7cSPOTz2WM2dwXfv34xw9PQBV5J74fPhsYkILHCaTWiRxZQWAw+NRzoQI/u/vx7nm5jCwp1L4PxxWMm2phOO3tzcO+pcirtKYur0WBFi/Z/HA9R51eHyWSVirbmsFV9Rrudj+l7rWfB6TeyqFvsVUW0rdh0LotwyVMOzBCZ7eL9bFYtkJhkJ7evAcWD8qEsFzGhnBb4cD3pbubg03scbP9DT6Bvkira0qtriwgO2LRfBFdu/WMNSOHarKvHWrZo498wz6aCKhYcShIfxN4Euy9oYN+J1MwmPp86GfJ5PwpPz0p1oBmmCvXAagSSRwT8bG8P0v/AL66ZvfjM8TCQXJfX24VzMzjQueYhHvVzjcCGSMXd1m0pqNXdXGcM2mTY2fLyxozZTlZQxO8TgGMK8XBMHOTqwQWXGZHgbqlCSTWgjObsc5nn8eE8jiohauCwQQwrHZsD8nbJ8P7aDLm5N5qYSBvFLBdpkM/l9dxcB5220I79x1FwZrEVzLT36CSYS8hJ4ekf/wH9QlPjODCYgr0Hvu0Wykjg60b3QUg/TGjTj3Qw+pyBsnSRZWDIdxDpKFGbopl7W6MEFKRweudX4ex6BOTbmMfalay5+XM6t3RUQBphUMuN0KIF4PI//HClYouPdyK/C139Vqjfoz1SqAcKmEPjU1hT46NKRKwfG4KrdaPTjNzQpI6B2h9yCXw7MaH8c2Bw8CAIyP47h9fWh/Oi3yb/4N3ofTp3HeWAxAiWKDL72Efl+p4JjVKrwZJO2+5S0APbt2ob9NTgIAlcvaH1ZX4dU5fx77iuA4ExPo+wsLmiXV0YHP+Q6yGnQ0qmG4tjblwLAOFe8PM7JY7JRChzYb2hEM4rktLADsWHV22J8oCkhhRGPXlxnAYuwNsaUlDC4sZmg1hi0o6sZVOUXWMhkAgGBQuRFMPS2VdLvVVQymmYzWgclmVZ6ehFLqg3g8mHwomEXROn4+NIR2DA6qF6ZSgSfmrrsw+N9yixYRPHUKE8a+fWhTezsAB8HY5KSuMhcX8ftDH9KKwSSvVquYhJJJALXVVXhf6nVMNOT1NDer5sXsLCYvZjb5/WjX+LhWd15Y0Po30agKxTF1tqlJCxjyxyrIZuV+MPPKGuoh4ZfVnMlpoT7Kervs6YlwOjVjqVjEs08mG3k5bONaTwyBBkm61lASATFrPyUS6AOFAsCM34/rD4cxudfr6tU6dw7n7+pSdVt67xIJ7Dc9jUrhu3ah3/C5eb3aX9/xDjyvI0c0dHnyJNo1PAwPytwcfgoFLcK5bRva8M53gmRLPlQ8DpA+N6eeEa8X7RwbA3gplXAtY2No1+Ii9me4Z3RU+WR2O/pmWxtAz86dyCzKZrXUQSCAa4hGcY0bNoDIe/gwwl5PPIH3i9l/LNwZCMAzMzmJd5JGhWLyvYxdP2ZCQsZed+MkX683unOt4SByPPx+zdj43vcAJn7yE6weDx7Uwm3MxsjlsP/CAo53990I+fh8OuB3duLvchlu8GIRK8vlZRz/zBmt2MxVIyfe4WGttdLaimOTF7B7NyaM06dVNOuuuzAJtLUBUExPqy4KNSbm5nDclhYtkMhVJoXJMhlMCOS6MOOkUMB+7e1ovzVzpVTCuc6fx752u4Z52tu1gq/V29HUpPf7UnaxsI7bjf044dMjQc4HSa5UdaVuzHoaJfZJ9PX5GgETycAiuI/p9IWeGILiixk9BPQS0LJZzcQplzXkEwiAYM57ThJrsYjnXK/jmVerAJsOB+7j+fPoL83NAAQTE7gWn081UtxuZKKxJpbDoQTb3l58z/89HpH/9b/gwensRD84dQqAJxZDv2xvB7g9dAgAg16yZBLHI6mWnpV0GvtMTCj/R0T1azZtArA4cADv/uoqQAZBi8OB4xLwMv36134N78c734n7auVjbd2qKeTWcaRUwv6hEBYZxq5+MyEhY1etcWJdG2NeWNDPJiYwoLOoGdN4GccPBnXAJpGRAzczgxgyoXbE3Jx6DTjYrqxgtZlKYRJjtdhgECBmdFR5Bn196r5uawNo6uxUtc9AACvD1VVMAqEQjs+066UljcG73WjH1BRWqVztcxVvt2MCGR/XQo19fbjmsTGAoN5etLNYxLFZybpSweRUqWC1zjBBMqlS6CwF8ErF4i4FTtraLh3WodeLgnPWCtxXq9H7YzVK7V8KxLB0grVgpwieQTiMfjcxgXseCuH31BQmc3pfWlpUUyST0QKfIyOabr5lC/ohn3MohB8WvyyX8fnQEEI9VMClTD+9jcPDuJ6XXgIQeeklrTG0caMWGFxYQB8dHER68n33gZdF4cRkErytw4fR3mRSOV49PThusYi+7PerCB55ZENDyIxi+It1tAhIGG47eRIk+uFh8NYOHdKsKRKArXWz2B/5frEitLHrxwxgMfa628oKBjNrKjONrvFEQuPura1YPbLkfS6nRf4Yr65UlMtBSfShIQyQrKtDNVkSEOt1gAlyPUIhfM6ihlNTAAnj41qvhSTeY8eUs7FhAwbu8XGAon37cI0HDwLQnDmjarLNzVq7JRJBRlFzs6bfxuM4BsXFgkFMNqwtMzGBa3/rW/E3U7LTaeybz2v4xu1Gu1dW8P/u3Rr2eTmr1QAqRbTuzY0oxPVyIIZcFCoEW83hUDBCzZCxMUzsO3bgWWUyWtOJNXdYqiGfhyfG5UJ22ewsvmPdIhGEGrNZLQ8QDivZd24O3shNm7Q2FnkrPp/IL/+yyBe+gH567Bi8K9u3a4VnZvjs3g2S9uHD4Gf99KcANRSj27MH4MTlwvsTieCdIMeGYMLp1LIYMzNoU0eHlsZIp5UzRTDY1wfP0rFj6O/xOO6fy4XjpVIK2Hp78a5aF0AMBa2u4jkYuz7sBhyGjL2RxkybtRocjHOLqAgas06o+unxIDXZ70fsmmEFEhtZLZfkQWYWkNBYr2u4qVbTwXF0FIMdXeZ79jTG3XfswMpydhYD+KlTqu3S3IwBcXER3pXbb8e+d92Fa3juOZyPWicvvojV5ZvehGMtLGCCWVnBcZlNcd99SkzctUt1MO66C58fPapaKGNj+n1rKwb7225TGfM9ey4frKyuYrUeiWAyoVKrMZjHg3vT2Yn+t7BwYYbRWiPx+6abVKl1eBjhEau3ZG5Oi2uOjqIfv+lNWl+quxuTc6GAY735zXg+p09j39lZBbt3343tHn8cz5OeG/Js3v9+HP+WW/BuzMygPwWDOIfPh3fN59PUaavXpljEu9Pbqx6WxUXNcOL7SK8JOU5+P4B9V5fy0QIB/O1w6HtKTyCzlgi4ajVVbaZHiCFTq/X2qkifsevHDIfF2OtqrDBMHRPayZOYaJ1OgIR4HINstaoE1UJB5GtfA1DYuVPl9eNxDIwtLZhwjx6Fd4OVbt1uDOSBgHIrajWAFLcbx2M9n+3blRBI0LJnD44bCGAld+wY5PgpdT8xgZj5rbdiUN27F/vPzioZMBZTvklHh+pWOBwaqrrjDq3gOzen9WxGRjDh8VxuN/ZlPN/n07RYchVcLuxzueJs5TImHJFXT1S0knCvdw0Ma4kBljS4GIH8UkbxQxZRjMXw7KjDUquhb7PEhM+H0KPTqUCXHKtQCF6Q6Wl8Rv0W6vBMTSk3iRk8k5MoF/GlL8HT8vDD8Hz09yu/5skn8f498ABA0YYNeNeee069o34/jr+4qAJwrGDOgofhMEATK1dnMjjns8+ijbfcot4Wl0v5PA4H3mWHAwCrWoVH0ulUdWVqyaysoL9buVfHj+P/zZvXX6TQ2L/ODIfF2FVntRoGsVpNvSn83GbTlGJql5DLMT+PgYyqryya5nRqDJ4Vn0dG8Jviby0tmPzrdY3P12o4TioF4DMzAwCxbRsGQiq92u0AH/TkLC1hYrj1Vgy8TU3wbpw/j4GT7m6HAwN3SwuOR6LnwIBmlbB6tMejAGdhQVVZm5owsSSTIBeWy2iTFYhR2M1mw0S0vIxJaefOVwYMtZoKo8XjuL6ODrR5bY0gY5e2eh33MZFAfwuFVMzw5YBfJKJ9cHJSFXTJxaC3o78f2ywtAdBTZ6S3F30/n9fUYno7uC+FDlnRWQT7sADjww8jy+gHP4C35sknAea3b0fbb7lF5Ec/Qmbae9+L8M/wMPo4wVYqpdXCX3oJffnECQ1liqANzNRimJe1iY4dw7tHIFOraWg3HMb25GNVq7gPFJCcm8O+TU0AO3NzjbWFqEEUj6NvG7v2zQAWY6+bJRJa28UaZojHdcWWy2Hgikbxm3F7DjwUylpa0gk3l1NXeToNAuHkJCZ5txuDGomN5KiwTkwup5L2mYyuXnM5eDwqFa1T9NOfAtRQDnxkBAPv5s2NlZwTCeXBBAJoa1sbjkk12+ZmDPZUq6XOC9U+WQ6A1xUKqXqvz4fjpdNaPC8SAWi6GFChaz6X088YbqtWce1rQUqtphkoa38ux9Z6Wi72/+tV/PBy2vJy/68VxGOJAaZmM4NHBP2AfKpkUtvDZ742+6q5Gc8tl0OfJQj1+TSN1+UC8XZ1VQm9J06gT1CMrlLRZ0g1WJcLz4uaKCSnbt6MNOiWFvTf4WF4GPftA/g+eRIgZ3BQQQv1hSYntRJ0JqNChe3tOPbJk2j78rKKG1Yq+Ht8HKC+vR33Z/t2nPfsWZxvZQXXlMtppfHOTjyP730PYa54HO3NZnHvJifhdUkmLwz/hEL4/mI8I2PXphnAYux1s2oVA0002vg5J2e6vb1eTMSVipLrfvADeCgYK2dKaXMzVnuM5Xu9ONaZMxjYCVwGB1W8jUREmw2rsr4+nGN4WOXRb7kF2yaTWKk9/jiOd+edWN098wwG2y1bAEisIMLpBMcglULbKI8fDuMeeDxatM7txrlTKdVdIY+ltRXHo6puU5PG/imG1tl5YeomJxMas1m4yqzV0GaXSz1d1AghgGK6+FppeyrY3kh2MdBGoCuC+0G127Y2LSVBoTMR7cskzYrgeTIF2ecDEC4W8WwXF9GXWSSQIU2fD8d429sQmikWVeWZQD8axTHIa/L78XzjcfykUgAIk5Pq6WAdoM2b8fnx47iee+/FcZ56CiGcrVtxjM2b8b4tL2Nf6hcxPONw4B5xgbKyohlN5IbNzWFxceyYiteR48ZMqs2bsYBgdepEQs/JxUwqpe9VoaBEaeopFYvqtTF2bZsBLMZeF6MYWr3eyNrnAM7qvvE4Bh+nU1VEPR5MsN3dKqzFQSqZxOcsOrdrFwa4fB4D4Pg4Jo7FRZyLkz9XcAMDGFwHBjSLYsMGlU4XAVG2UBD5zd+Ex+M738GgTrnyYlFrCfX0oI35PDKBDhyA94P1e1wuJcK2tKD9S0sANs3NmKQOHsRnmYxmjbS1afYGXfpdXfh7ebkx9dbnw/cXAxZUAY5EcPylJXzOSfdKeBg3iq31CIo0rtrJN7ECGGbSzM8DKFKV2WrlstbQoXk8ANf5PPoYC4Ey0y2RwMQdiyEDLJVCH5+fV2Da06NAPpvV8gAM9505A2D+5jfjOihlv307so9uuglA5rnncJxf/EWc98wZgIlIRFWfz5zBebq68F75/dofHQ68S6dP49q6ugBUzp/XcGlfH445Pq5V0gcHtd5SMqnE7+99D6T2dBrniEYBSAoFvFctLbgvrNTMPp3Noq8bwHLtm+H/G3tdjKv3YBADFC2RwCRps6m2QjiMgYrpo488oim+mYxmKjgcmv48MYFJoa1NRdvGxrB/JKJk264uDNrZrIq0RaMAOW1tGkun6ufyMo7ze7+H1d4jj2BlGIlgBRmPg7x4/DgG8KEhTDpf+xpAycaNWDnv2IFJJxLB3x4PCIUvvaTVfru7EZ6ZncW9SqcxoQwNof1Hj2oZAaezUSiuo0N/LiY7XywC7JCbw6wr7hOJGFXQV2t2u6YXd3TgeWQy6KN2OzwXJDRbralJibP8YSkKKjIHg+h/zKzp7VUxvuVl5VkFAug/4+PwhMTjmPi3bcN5Nm1Cv9u6Ff0yFoPXpLcX/5MLtnUr+hkVmB9+GH3lt38b2zJDrlpFP92zB6CG1aJJnKWmTDwO0GD1VqbTuLZ8Htc5OAhwVqtpZhu1lIpFgJ6mJvWQkqBMb8r4ON6ter0xDCeiBU1FLj+caezqNQNYjK27cfVPUq3V6D5uacGg53QqwY5ud8rW9/ZiAJubw4TM1WOpBMDCyrCU52f9EWZMUA3W51MXcXs7gBLVRwmGKAH+zDMiv//78Jr8+MeY9P1+tHN+Hiu+48eRfspB/gtfwCRy//3wsJC/EgppobkjR3Cc/n6cs7sbg/L8vApqbdyIAfz4cXh5XC7839urE1xz86XTjtNp3LuTJzGo9/fDk0SAYgWOxl47s9u1LEI0ChBQreI5Tk2hb1lDQ1Zj2nRHB8Azn3EigbBkqYTnSLXjTAbvw5YtmMw7O1Wx9vhxrS/EGj0bN6KG0P33o1+8+CL6586deEcGBnB+ejrb26GKKyLyf/6fAGYjI/je6QQYGxpSWf16Hedn29xuAC2CLHqepqfxjiaTeEcJRNrbcT3WjCmWIWhtBcBfWVHvI8saMB3a52sMhxLc12pK5jd27ZoBLMbW3Ri/JqGQRi0HajZwEMzndeU0OqoZFxy8qKBqzVSgKNzKCoDAzAwGzVBIFS9bW1WZU0R1WFpbMcm0tWG/QkGr1H7oQwAfR4+CdBuJ4BpmZrBqLRbxPbVl/vZvsSL8jd/AcVMpTFIUu2Iqdn8/zlEswi0+P691WwYH0bazZ0F4rFRALNy5E+e/VIomQzz8KRQwUG/ZgknzlVRtja2P2e0ApLt2wRNSKmkocGlJwcHFjAUVDx5EP3nxRU0HHhwE0GcxQmoC1Wpa0mJxUTPPkkn0WxEQaH/xF+FlGRtD/9y7F5P6nj2afUPF2r/5G/Tn/+P/0FR89uf5eVxXTw+O7fFoFpzXi37Z0qLtYNgoGlXl2u5uLAYSCVUJrtXQ/lJJvZPT07j2pSXlsOXzyh2j5hKNoVgWATV2bZsBLMbW3Siw1dqq2RQiGECbmwEaEgkMNJEItqcuyvQ0BkISB+fmMDCxzk4yiRUfyaOVCv5myMNuV50MenhyOXzHY7a1qeQ9OSMjIwj13HYbVqIPPYQJolDAtfT24qenRzk3jzyC4/7+7wPAjIwo9yYc1razQCFFxCYn8TsQwAA7N4cJiEUP6XZfa9lsI0Cx2zUkQRJiV9crV1k29vpZOKxFMxmSa21tBDCJxIXhC7sdwGX/fkzey8uY4MnLCgQAfCjdX6th0t+wQYnk/f3oX0ePoh/fdRfSlX/wA530GR66+Wacw+2G12NxUeSrX4UH5kMf0pINdnsjyG9rA2hgSjFTm6k5RG2jWk3DuLkcPiOg4cLB51MuDDOznE68pyz2mUopgAqFtNzG2ntHUclCYb2fsLH1NANYjK2rlcsYaCqVCydOSuqHQjrhcgAi54KpowQeLhcGemZhVKv4PBrFbxL4mP45O6sDqNOpSqJcBQ4NYeKfmtJVWD4Pj8Rb3gIvxw9+gME+kcDgOjCA85HvEg6j5kqhIPKf/hOOTWLhxo0455kzOCZLBHg8GGQXFlRNlAN5vY429vcDEFlDPrkcJg9mSln5D9SwicfRtstRtjX2+hsF1KgxxIneGuaLx/GM4/FG8MI+xWfL8GcwqKGfkRG8V4GAqj5Xq+iDLS3wpJw5g3fsgQeQLvzd76L/LCwg/FmpIK1/aQnv2t69WDx87WsA7h/4gIIRtxv9vVzWrKjmZrxzuZx6lZjhFAg0LjqoVeTxoL0MDc3P62fhMPbZsAGfx2JoT72uIbNsFmNFINDIZaHuEbWMjF27ZgCLsXU1SuOzqB8tm1VFTREMXm43BrRcDmAlHgc4EIGnYG4Og97kJP5fXFRVV5dLV2rLy6p7wZo6jOEXCmgPdSoSCQzSTI1mzZ8HHkAbzp/XWii5HMJALS0Y1Ken0b7Dh3HcD31IBet4nJERXHd/P7IlPB4c98wZrKxvuQXHstsxmJIMvHmzelXyeQUp1aqmrlqLChYKuAafD5PAjZZ6fC1aIADgsrKCvk5zOhtLIxC8JBLqcSAXaXUVz56ZX3v3IgS4sgKtlmwWk3suB6Bx/jz6+9atAPa5nMgHPwhP3k9+AuCzsID+l0hAJNHlAndkyxa8W9//Ptr2znfivQ2HAUhGR9HO/n60myHceFwXGl6v1veqVrFQYNmA3l4F9JEI2uH16nvKe0MZgFxOibeFAtrW1KQ8NJrfj3t9MeKzsWvLDGAxtu42MaE1U2iZDCZXmw0DSTqtFW2pRpvNaubK4iIGU6cTgxpXaRRsYyHEyUkMhKEQBmSCENZDoccmEMB309MYNKNRbFcqgZA4Ooq2UP+BaaQul8qbd3ej3orNBn2WLVsAoLhinp/HNvE4CJDLywAt27ahVhAFuKjku7yMdg8NAbgRpLCuSjR6odekXsc2uRzug+GpXFtms2FyDgbRD/L5xu+t4IWp+IuLKrJGcFKpKMk6EkEok8KHrFH11FPoW6WSVjNPJDC5/+IvwqsxOqphl1tvRd/duFGrkpPEPjaG9+fgQbxDw8N471hWg6EdEtydThXbKxTAx7HbtYozVZ/5Tk9O4pyzs7hOvkuViqrcnj2LfclhI8G4XsdnF8sKYgV1Y9emGcBibN0slVIvB8myNJa9D4dVGj6VwgA0O4sBi4Q6eldCIQyOXV34nUiowBmzfhYXMej19GBgttsxSJbLjdVdy2UMgpOTGGxJxr3/fvX2vPSShpXoHne5oFdBl3QwiPbccw/ayEweApfnn4frfWUFE8Tb3w63dq2m2hnk6mzcqECFYa5o9OL8Fd7fxUUtRWDs2jWXS3V1LlVQsalJM49IXE0kNFWf78jiouqX3H67yKFD2DYQQOgyk8H3DD2SWPvWt6IdzGAaGQGXZXUVXpNgUEnjqRQ+HxjAD0GLwwHPTmurygm43aoDI4Lvzp5Fv6bIHtWng0Fsa7NpDaJ6HZ4WplP39uIeketG3hrfGy5QrMCEIn3JpKY5G7v2zAAWY+tmLL5mzQwSUZVZ1sGZm8NAVSphIIrFMFB1dakgHEmzVu9KLIaBm16FREJJiKOjGPBqNQzwFKAjt6WlBYPm/v0Y+ObmRN73Pi3YduIE9ltaAhHx9Gm41O+8EwJWgYDK7N9/P9odCumqMZtFe+x2fHfHHTiOy4Vjrq7i+CMjWgeJgnDR6CsLuDHturPTFHa7nox6LvPzl059FtEigdGoZuC1tCA86XJpFl0+D8/EO96BfsJQighAhs+ntbJ6euCxIa9sfh799O678T7t2YP9SSCnDtGdd2L7iQlovbDmD/s4ya7FIs7ndqNdPT14f+bm8G7mcrgmikhy0TI7q8J0oZByXmZndVEkgv2mp7VekfX+tbZivFlawjnL5fV5fsbW1wxgMbYuVq1isma82uoloDKl3Y5wDN3BLS060NlsStRbWcGAFYupB6ZUwnE6OjD4sa6Iy4UBmudgKKhWw4DV06PekVAIK654XOTnfx6/02kMvH19ABp9fTjfli1Yqf7DP6jyaLEInZVCAedkPZOVFQyKU1PY7p3v1IKKdIGvrIj88IcY0Hfvxm9mObySLSxo2qqx68/sdvTT5eXLy2rxeNB/+vvRH0dGoPMTDKrHRgQKtm9+M8KclAQgR0tEU5uZPbd9O46zvCzy7/4dlG/37dP6QwsLeA9HRtDHW1oQftq+HYuBQACcr3IZx2RYp1TSYp0+n77LlQq2Y3X1SkULRBaLAFyrq6rJwgzBXE5LebB4KcnzBC12u3qtQiGjyXKtmgEsxtbFEglNry2X1QtSr+vAYtVboLDU+fMAFK2tABzpNH6vrmLgYsrmwgI+p2eGEucul3peCgUd+JklMDiI76anVZ7+7rtV7rta1eKJLJzY0QEvyt/+LcBKWxvayqyOri4tmJhKwVvCyrW7dqEdMzMYYG02fFevox4MywpcjtXrAE9MHTV2fVtXF/oldYQux7xeELl37ED6MrNipqYAyJubRd7zHq1PFA6D68VFg9+PPsusvptuwnHGx0V+6Zfgadm8GaGlvXuV+HrqFN6RtjaVMCAXhSKF1aqWFvB68a50duI858/rIiAUUtE56iktLgIklUr4aW3FNeTzWgqAnDQS693uxrAQSyYsL79mj8jY62wGsBhbF6vVMNhSnI3GAYTegakpxJerVQxgiYSKR7H+EFODGTJyODDAMkwUDmPVxzLz6TQGrJYW5YlQ82JsDIMfBeU2b8bxJiYAbnp7MciurmIbtxsD/P/3/6nyLK9v3z6cj14aEg2few4ry6EhDOQEPx0dmCSGh3HeK7FqFfuSr2DsxrBIBJP4labjtrSAeJtOa8HBXE6VYu+9V0MqnZ3oW6wETuXaXA7H2bYNXCy7HQAmn0cf/uY38X97O7Y9cwZgye3WEJHdjlBSsQgwNDuL96xYVL5MU5NK97MyOUtPFItoH6tfl8t4F6ze1/PnNdREET0WWrRygbgIoiTC2urOxq5+M4DF2GtuuRwGkMVFTPBWCfhyGQDC6cTAks1igKKyKyu8VioYbFj9leJvjI+zmJzNBhCzVmCKGiXUOSkWoRRrt2NwZqFB1kHZvVtJuydPIu3TZkOmxGOP6UqQadMHD+L4xSLc0s3NOM/Roxjkt2zB5LBpk/ICyAO40gKDLALZ3X1pGX5j16+xn1tTny/HbDb0eQLy7m7080wG/engQXCzcjmEPuNxbOfxaIbR6ipA8o4dUF3etAkARQT9+stfBngZHsb5Zme1bABJ8+fO4Ro8HrRlaQnvnteri5OmJpybFc35ndsNoJLN4r1jYUhmVy0uao2hfB4/uRzesVIJx6KaLgGS3a48GmPXlpnhz9hrbum0ikWRXyKi2UIk7jH2TIXL6WlV6rTZdCClKBSFobJZJRoGAhgkRTBQcpDz+VSjxePBd6dOaYybeg0eD1zg1Fr58Y8RIspkMDhTF8LpBNiYmIB3hKnHR44okBgZwe9t2+DK3r8f/588CfC1a9eVA45cDoDtSkJHxq4/I8B+NVoirHJ+4gTej4EBDWsSWKfTyF5bWUHfbWqCCm4iATDgdqPPv/gi+rXbjZ/ubijgtrXhXe3uBvB3ufAeT07iHd+7F+85xem6uvD+1Wq4NoaFSY5va1OQRkFIApBKRUsHcIxhjS96drJZLILs9kYROUoOxGKNvBZj14YZwGLsNbV6XaX2qYnAiZZENw5QDAd5PBhkUikMaoGAghgOKvxNrkpLC7abmsIAxiwJStKzfojbjYF52zbsNzODlVmlAkDS2akZDI88gtTOiQms5LxebOd2A2ycOIFretObMEiePq3VaWdmMEj29OD3jh0YKE+fxkTAOitXYqmUpjcbM+bzof/NzWlB0cs1jwfelWQSIZS2NvQrhwOeQmq1bNiAyXxhAfu87W1aHqNWQxump+G5sdnweb0O70tbG/bZsQNAIhAAiKhUVLfF7cb7QgkA8tNYfJSFTekFYTV2elDm5zUExUzDXA7AiKFfhoW83gtJyz6fKkK3tV2518rYG2sGsBh7TY0u3tXVCysJ12oKAMbH4cUIhTBojo3hO6bo5vMY4GIxAACy/VdXAXL8fgyKBEGdnRhwKbs/Po4Bi9lHXHW1tmLAKhQAQuJxrMQeewyek/FxDLitrRiICwWsLEdGcLy3vQ1toCZLezuOvbyM8/j9OE42CxCzYwc+ezX3katBY8ZoLheAxtzclXsHbDb05eZmgJZwGF4RZuaMjCjoJim3pwdAh9k/1aqGbKl8u2cPFg4nT2r4de9eeG26uuDpJO+FpTpWV/V9SacBmioV/MzO4n1m7aBYDONCJqO1uCoVHIskWoon2mwYB+jZZbYgicvUknE4MH4YD8u1ZQawGHtNjcCiWNQqqyLqwk0m8RkzahwOTMxTUyqCVqthe48H3yUSmhbJUA7F41iRuKND65Z4PNjf6cQA29+PAWtxEQP00hIE3KamwFX5yU/U5Tw8rLLiuRwmh1gMxzx0CO0nobivT+XIOZEMDeGcY2M49qvhnLDoHIW2jBmzmsOB0Mv8/KvTE4lE8B7Nz6uycjCIfn3ypIZK6fHYtQt9/cwZVWe22dBH9+/He7RtG/hbVJ3duxeggTwxkmZZM4g6KpTeTyZVgyWV0tAtAQjHgnQa7yn3cTiwTaGAsFC9jrFhchLHaW3FMTMZvX5WaE8mtRiqsWvDDGAx9poZmf8MB7GKsYjGkYNBgJqpKf37zBkFHl4vtqWU9+qqEuXyec3EWV7GQFOtYqCLxVQ2nwq0LDefzeI4HR0YZCkm19GBwoYcHCMRgBu7HYNcS4sOjgMDOBdrrQwM4Brm5nBd3d0IMdlsGDg3bnx1VZKpj/FqvDLGbhxjOIYcjyu1gQG8E6ur8LSwoGK5DJ4KgTql7HfswPtB8i4Lkfp8ACcM6zzzDI4zPg5v5PIywM7yMtra06Mp07kcfgcCeEc7O/FuFot4r4aGVCn3/Hm8o0tL6uWp1XAfmpowfoyO4v13uwFQpqfxHq1NC3c48HkqpaUGjF0bZgCLsdfM6D3hysoaZ6/X8bnfj4meLuFQCBM8Cbk2mw5I5TIGuo4OuKup5bJxIwa0bBbbdnZq2iTDThzMolEAqEwGK6+xMRR7W1hQVV0SGnft0pUYB1GXC8dtb8exGPpJpXQ12tmJFSZDW5ROvxKr1bDijERMPSBjl29M+X01k+7wMMKWhQL6bE8P3oVcDoq5mzfj3ezoUMmASATvQFsb3hWWC9i0CX83NYk8+SS2GxjQ7L22NryHLIJqt+Oz2Vm8T3a7ajOxbAeVbSkCxxBPPK4Zetks3s1kEsefnMSxSiWVVcjn8T4zNZwe3qYmbMPyGMaufjOAxdhralSstNtVa4UAhgXbkkkMGKwxQnVbkunyeQx4XD02N2NwKpe1AFw+j0EpElFeSyCAAZgkVXppYjGsCilK5XTi98mTaJffD02VWAwDJgdtAqi+PuizZLMYpP1+cF7a2jDYbt+OY1Ijhmmfl2uVCjwrXV2vzitj7Ma29nZM6tZsmMsxhwPk8vFx7E8F59ZWTP7HjgHUnD6N92JoSOUCEgkFS6kU3gEWNGRBz2RS5N3vhlcmGtX6XXw/yFkpFvHOpdMAObWaHoOeTa8X7WlrU70Wjwf7cpFDsi3reVEsj3pNJOCSwM9wkFG+vXbMABZjr4klkyo/HwioFosIBjSbTd2zrIBcryvZtlzGZJ1OK9BYWcHgduQIjlWvI2SzsKB1ivr6dAVFUl6hgMG4tVVTnlkb5e1vx8B29izOW69D7Ioy/+QEsJhiNAqPTq0GL8/wsMi3voXPHA789vnUvT4wcGX3rVAAAOvpMRorxl69tbYqQfVKzOdDvx8fx/87d+Kznh68IzMzWnQ0EEAxxVQK51pdxULA5cL3W7fCK8OwqNOphTlJkF1YUG5WrYb9Z2YAPoJBvPPUUFldxTvh9SqI6erCNsUi9qHEgcuFfc6exbZcGLHo4lpPCscjhqVerm6TsavHzBBp7DWxYhEDB+PTazVDCGjoUWlrAyg5fRrfs94INR/yeU09LJVUC8XlwqqJZeaXl1V4anERAIPVWINBfNbRgUFuwwZ4ZLJZDJzVKlRsWcU5ncagurqqlWP37cOxjh1DNsQ//APi+eUywBJrGc3PY7V6JVopdOV3df3r7r0xYyKaRszaQZdrTEeenUX/3bED79vu3ZDgL5e1r3q9EFN0OPBu0bPJBcGWLXgfWWPIZhO56y6883xPCVqoWO3x4J2jBMGGDaq1MjOD9pXLAFLHjuF8zGByOHDetjYcK5/HdTCcu7CgPDbK+Yvg/FTZXVlRwGPs6jYDWIz9q40gJZUCCPD7VT6e1VTJWVlYwCBWqQCQsEx9JIJBqFiEF2VyEsc5d04LpEUiqrvCukCsH0RuiTU8RBEqDli33Yb2nT+P8+zapXoQTOe02bBajEahtyICMl9fn8hDD8EtnslosblKBYNqTw+Oc7m2uqrVmY0Ze63M61VuyJXwMnp6dJHg9YKTsrqKd+aHPwTYGBlRkvvmzXivT5zAu1GpYJv5edQUKpcBUubn8c4MDAAYsBI1M4BKJSUP2+34Ph5X2YLZWQAYXguBBwUdyX3zetXDevYsxgKvF+93PI7/s1n1oDIrkFw5kouNXd1mAIuxf7VRe4WKlEwnFNEMBq6iZmZUvOnkSQwYmYyueKpVHCMWU+JrtQpgMjioA3Ew2FiXhKXpmW3U2oqBkQPgjh3goYyNYaVYq+Ezlqvv68NA//jj8KqQRLu0hG1PnFBOTkeHgpupKZzrSionx+PYl3WJjBl7La2pCV67uTm8O5djNhtARSKhnsbBQRzj1lshDNfRgfegXkf4p68Pk/358/CspFIA8uPj+L5Swd+VCoAP9U+8XvXWOJ04J72v9NL292vNoLExTbt2uzGOUAohGlUyrc+HNlBdNxjE2BKL4XoIinhP6nWMS6xPZOzqt1cFWD73uc/J4OCgeDweOXDggDzxxBMvu/3jjz8uBw4cEI/HI0NDQ/KFL3zhgm2SyaT8zu/8jnR1dYnH45Ft27bJww8//GqaZ+x1Nq5+6nUMCFS35W8OGKurCA2xfP3YmJaNpzBURwc8HBRtYxpyMIiBsVbD511dqpS5uKh1RTweHbiam3UgOnRIQzf5vMiBAxggmT0UDov89KeI4YfDSgCenMQ2hQI+DwQAbKy6MFfiJVlcVG0KY8bWy+x28EMWFy8/1MFMoKUlvJfRKEDLwgIA/IkTWllZBIB/zx78n0jgnaKS9P79eGdYybm3F9uTl0agX6vhfRwYwLaZDDwqiYTWBZuY0Hpc9TqOQXmB3l7NsGOGEVW0HQ6MBefO4e9CQbOVRFQDhqCppeXKicvGXl+7YsDyta99TT72sY/JJz/5STly5Ijccccd8o53vEOmpqYuuv34+Ljcf//9cscdd8iRI0fkD/7gD+R3f/d35Rvf+MbPtimVSvK2t71NJiYm5Otf/7qcPXtW/uqv/kp6Xo2eubHX1Vg3KJHAIMkURRHNClpdxQBz4oQCisVFDCC5HAaRmRkMrAMDACwUhmImweAgwIPTiWPE43BbLy8DlLC6LLktFMVKp0GqDYUgbFUqAURRIM7vx0BHT0okgtVhuYx4uc+Hc3R345pCIdV9KRYvX3K/XsdqlUq7xoytt9ls6LcrK5cvjhYM4r2Ym8Mk39wMAEEvaCaD92F+Hv04GkV4aGIC7+Stt+J8CwsIueZy+DybBWHX4cB7Ewwq742FUNvacNxAQNvOshlWngnTopltSNJsRwc+s9lEjh/XIqi5HD4nMZ/qtsxMstnwGbOOjF29dsWA5c/+7M/kQx/6kHz4wx+Wbdu2yWc/+1np6+uTz3/+8xfd/gtf+IL09/fLZz/7Wdm2bZt8+MMfln//7/+9/Lf/9t9+ts2Xv/xlSSQS8k//9E9y2223ycDAgNx+++2yZ8+eV39lxl4Xy+W0Xki9jgGB4SDGi7mCsaY8Hz2KAW9pCaskAgmHA4MT9RrKZQwkBC/5PFZofj+2mZ8HaBgfxyDI2iLks5A4S4n/TAb/Lyzg2NEojjs9DVC0dSuu44UXNFYeDqtMfns7vDf0zFxOZk+thgkgGm2sXG3M2Oth0Sjem1Tq8rZvbwc4mJ3FO+ByaQi0VMK7NzICINLfrx5Gej8iEYCBPXvwWbGIxUoggArR2Sy+p1eE7/XGjTj+3Bw8KtREIpets1NTmEnSPXsWHJl0Gu80VXXjcRyLGUKU+ydR2KoQ7HQ2ZheajKGr164IsJRKJXnhhRfk3nvvbfj83nvvlaeeeuqi+zz99NMXbH/ffffJ888/L+V/6TXf/va35dChQ/I7v/M7Eo1GZefOnfKnf/qnUn2ZwGKxWJRUKtXwY+z1NRYntGYGkXnPgoXUF0kmMZh5vdh3eRn/+3wYXHI5AIYTJzBAUneFminnz6sYXSYDF/XUFP6nRkouh8GW5etrNZE77kB7TpzQFd3AgIrWeb0Y/DwenN/nA1gJBjV90+3GwMpQFmPulyPwRu2J7m6tk2TM2OttbW3ady/Hurrw/jDzzumEB8PhwHsWDkOhemUFYVTK4QeDACwM02zfju1zOYD/AwfQllRKK7ozNHPuHN6TuTm8W01NeJ8ZKiLnhWDD4VDvZ6GglagpaHfmDH4Hg/i7WlUtJt4Hu12Lsa6uNoaMjF19dkWAJRaLSbValeia8rHRaFQWLpFLt7CwcNHtK5WKxP5FNGBsbEy+/vWvS7ValYcfflg+9alPyX//7/9dPv3pT1+yLZ/5zGekpaXlZz99fX1XcinGXgOLx/UFp/uYfJZ4HINaKoWB5sgRTPgtLcpFyeU0zk4NE2YRVataKM3tVtdwKIQBqF7HfgMDcP/6fOriZVZSby9WbZOTOtDu3In9ymWcm16X3l6sIo8dQzt5vmAQ1+hwoO0EQ/QivZxRrZOrU2PG3khjteTl5Vfe1m4HUCkU8C7R00JZfoo4jo3hHd+5E+/q0hLeP5cL59u0SdOXT5/G3wcPKuF1eRmgpFJR4bhyGSHi3bvxDlLF+tw5XSTU6zqGTE/jGKUSxoGVFRzv3DnsR4VdEn2tpQwYsmaYyKjeXt32qki3tjWjb71ev+CzV9re+nmtVpOOjg754he/KAcOHJAPfvCD8slPfvKSYSYRkU984hOyurr6s5/p6elXcynG/hVGLwrdvtUqVk38TgTfc8CgR+XUKQxu8biujlpa8H0mo2EWmw37TU5qFdhSCau0yUmcl2qblUpjaqLHI3Lzzfib8fVgEKvEjg787fGoDPjOnXAvE+xQXbOjA8dgOiYH8su5N8kk2mfM2NVifj/e0ctJ4fV4AFQyGa3Z43RiEbC0hP/tdiwy6nXwwgoFeFLIA0sk4GXJ57HvzAxCOP39ABB8r/1+nOP8eSweZma0Fpjfj/eRZFu3W+sDMY1540a8t9PTeFdTKYwVKyvw/uRySv6dmVHg4nCopzgQ0AxHk+J8ddoVAZb29nZxOBwXeFOWlpYu8KLQOjs7L7q90+mUtrY2ERHp6uqSzZs3i8PiM9+2bZssLCxI6RIUd7fbLc3NzQ0/xl4/46qLsvsiqg5Lz8jsLADJ1BQGPZZ2LxYx4IVC+t3wsMhLL+kgyFofXq/qu7hcuiKiOuz58+rWTaUwAObzWNlFo9BQ4aA4PIx9MxkQBRMJDEw334xBNxhEewIBDLyDg1rwkAqilwtA6Eo3ZuxqM69XU4ZfyVpalABP7RSnE+8XyfEsCxCJaDiGWkiRCN4ZgqTRUYCEAwc03LqygvPYbFonSATem/37tQ4ZRSO5oGF2IQUmazX8vW0btnO7UciRKdFLSxhXSiUdL0Rw3lAIYwSlGYyI3NVpVwRYXC6XHDhwQB599NGGzx999FG59dZbL7rPoUOHLtj+kUcekZtuukma/kVd7LbbbpPR0VGpcVkuIufOnZOuri5xXYkal7HXzVjLI5XS6qc0ZgeRAzI2pkUKX3hBXcTbtmHbQgHAJhbT+j2VCrbjMZjlsG8fgBAzemIxfO/zaZzb54PHpF6HV2RpCecOBgEiWE+IbmWKy507B5e01R1N4i/lvi+n1k8yiQHRSO0bu1qtvf3yZfwJvJeX8Q7U6wAvzMrJZrU+z5498H4mkyDOrq7i3d24EduFw1p5eetW1WYpFgFaajWtN5RM4t1j+NXlQpsdDvWy8LynTmmZDpL7V1Y0uyiVUsCzVtWWtcPKZQ0JMQxt7OqyKx5SH3zwQfnrv/5r+fKXvyynT5+W3/u935OpqSn5yEc+IiII1fzqr/7qz7b/yEc+IpOTk/Lggw/K6dOn5ctf/rJ86Utfkt///d//2Ta/9Vu/JfF4XD760Y/KuXPn5KGHHpI//dM/ld/5nd95DS7R2GttxSJeesZ6MxlNTxRpjAEvLuK7ZBLAgNk6rC/EldnoqBJ2s1lNSeQAU6tpHZFsFoPl1BQ+54DjcuH3/v0AIGfPKmmvuxvnS6XUuzI9DdnwSgVZD1u2wMtz4IDGuX0+zVS6nArM5bKWGTBm7Go2Vl6+HOvs1FRihlI3bsQ75fMBhNTrOCYXG263Ztb5fAgDLS5qkdBduzBmhMM4rtutopGswD4xgcWD04n33unE4oecNJcL7Rofx3udSmnYKZHA+HDuHLyxuRze8/5+bE8vi8eD951ijiTVU5DO2NVjVwxYPvCBD8hnP/tZ+eM//mPZu3ev/OQnP5GHH35YBv6l6tv8/HyDJsvg4KA8/PDD8thjj8nevXvlT/7kT+Qv/uIv5P3vf//Ptunr65NHHnlEnnvuOdm9e7f87u/+rnz0ox+Vj3/846/BJRp7rS2ZVL5IOKzAo7VVPS+Uq5+d1VXS1BS2XVjAaojhoK1bMaiIYEDKZBQQuVwKiLZuxYDH1VgyCa9JUxMGl2gUfw8O4pyFArw7mzbhuM3NGAg5yLFaK+sNnTihg6i1mmu9fvmqtMvLRm7f2LVhDN2QD/JyxmKi5HzYbOCg7N6NPj88DMJ6sShy331YgKyuasoxw0OpFN61iQkcY98+jCMMw1Dxenoa72uphHewp0cXDiTJErw4nerp8Xo1c4jXNTqqyQEsP1AuX0jAZUo005qpz2Ls6rHLcHBfaL/9278tv/3bv33R7/7mb/7mgs/uuusuefHFF1/2mIcOHZJnnnnm1TTH2OtoVu9JuYz/m5owsNjtChympzEIxeMABLt3i3zve6pgu2ULAALj0Cw4yCKHNhuAis+H7bdtwzaFglZhrtWU4xIKAQjdey8GnOVlrScUCGCQLBaxCltZwYrw3ntxDupHdHbCi0OSMCtCUzTulYyKvsaMXStGkUWv95VDmHwXKxUNq+RyCAO98ALe8ePH8a7SQ+r3451KpbDftm1YRHR04P9Nm0Seew6LjCNH8P4QlAwPwxMSi8ErMjOjoRuGcpNJ7JPPw6Pa36/lN+x2VZYuFlV+YXkZYxPToxkCstlwfVyotLVh/DILkKvHTJTd2BUZCW70pCSTSphba4uL+F0ua8x4aUlXaLEYBrPRUS2ayOKFpZJWifV6AYIyGRWqy+VUhC2Xg8fG48FASC7L6CgGU8r5dHZigGbIJpvVwVoEg2kigQGMg1skcnkpyfk8BkhDuTJ2rRnl+C/HwmGABS5cKhW8d8PDAAp9ffCe3HwzuCyrq1hMUK3a7cb72tysHo+77sI+XV2qqFutAqAEAgo2enpUJoEZilw0sa5Xby+2nZ2FR5YhrxdfhGJvPI7FVHc3wBA9xRSaFIHXNp3GQsp4WK4uM4DF2BUZJ3JWX67XNWMok8EAw3oiVJMNh+FNsdkwkAwPY5tKBYPI+Lgev1RSzkpTEwYoVmXOZnHOmRmct6UFg96mTfCYvO1tGHxKJQVIpRLO53Zj+1gM7dq5U0vUx2Koc8IBy0rEvRwAQg+NKWZo7Fo0a0rv5Vg0qhL5lQrem/5+TPSs5UOeCWsS/UtCqORyIjfdBJKs3w9g0NODNgwPaxYPSa/hMI5fKsGTQpXafF7VsfN5AKBiUYumLizgHaa8QCql/BQCGo41JNuK6EKGZN5AAG00dnWYASzGLtuYtlyraSaP06kvPr+nqm2xqAS4pSWsbpxObDs/jwElk8GAwNTDWg0DCFdVbjcGDQIjelWamjT1ORoFuOAqKRIBJ+bgQY1HBwIa1+Yqj1kDw8Oq2FsoYFsWXLwcMynMxq51CwQw8V+OLL3NBk8mM/rqdbzfO3bgfQ6HARg2bcLn9GB4PNBkYVV2LioSCZF77gGIGRpSjly9Ds9LMIj32uHAMZk5yKrsJPDb7VC0HR7WEFRzs9Ygm53FeCGC71m5meCEBOJMRsNB9OYauzrMABZjl230oDAsxPTli1kuh8m/qQmDl9cL8EJtleVlrMrOnNGqrKyYSkn+dBoDGIFFKAR3brWq4GT7dhzj7rsxIIVCKu2dTOL7lhYMerOzuIbubpzL69VU59VVgJlQCAP35cat02kMakZ239i1bh0dlx8a4ntMoCOCd2vPHng5PB4AEqcT4KC3t1F+4E1vAt9l40aMI9EoAMPgoNYeIw+GGi5eL36ohF0qKc+MonaURvD7ERLu7tbw8pkzkC1YXsb77vMhjEXPi1V4kiBGpLEcgLE31gxgMXZZxlRFEXX31mpKUmOW0MICBg+GZpqb4e0oFjFI9PTg/0AA3y0tYXDgAEFJfhZJpK5KLAbgwgKJS0s4Bisut7YCcPT3I3XxpptwDL8f7WDF2aYmtJmVnLdtg4ekVFLBuMsVh6tWcc7L9cQYM3Y1mzWt93IsGMQ70NGhekqU7/d6dQFQLOIdC4fx+Y4d+M7jQTi4vR2LmVtvhXz/5s2N6rfT01oo1eUC14UZQNUq3mlmDJZKWNx4vTgni6ROTcGz6nDgvc9m8ZtaS8w2qlaVdEsuy5XcE2PrawawGLsso1clk9HqzExBtpaKj8U0e2BxUbNmZmexH2uZUKq/UgHooFuXsXFqrbjd8JgwM8hmU3XNbdvAXdm/HwPfwIDIyZMAQvG4yN69GHza2uBadjo1Bu5ywb3MFMliEd+FQpcv+GZCQcauN/N4NJPvcqy9HWNATw/epVgM71U6rd5KellYh6i7G9/v3w/doy1b8H0kgnewo0MXQSTWtrdjMRQOa+ozw7hcaLDq8sgIFiiFAs7DrMV6Xb2vxaIqaBOskMBLoELgYuqAXT1mAIuxyzIy8bNZddEyzmytKVStYqCgwBRXRWNj2I+1hQYGMLDQY0LiHF2vJOuyhk8koiQ7Fjh0uTSsU6nA7Xz6NAbCYhGeEpL6ikW0s1TCMZl+XSgAQHV1oR2XU4FZRF3IZjAzdr0ZNUsutwgg63lZia+DgwAfrLze1KTvsQhSoHM5gI8jR7D93BxCwHNz8LKUShrq+f/be+/ouK7rXHxP7xWDGQx6YQN7kyhSoiRbFlXiFjuxnCLbsZ0VvRTHVrKeHTtZSey3nh3HL/FyHFmJI7ms5GcrtmRH71kuki2qUoUkSJFiBUiilymYGcwMpt/fH1829wBEI0USIHG+tbCAmbn3zh3MOft8Z5dv9/djro+NYRPDZIJIEnW58/PkpHhITp3CPTgcUiHk80nIulJBjovfL72KqpNsjUbpU6a8LIsPRVgU5sX4ODwcHAoikvAN5574fFj4czmR67dY4NmIRnGcwwGtBK9Xqgsslgvj0VyWbDbDVez1wpPC19Q0aXYWDsuu7vBhSfjbsQOkp7YW57pc4jYul+GWZo2YFSvw3gvpwEyEe2UNGAWF6xHB4MJVcPV6zDuzGfM/k4EXJZkUxdpyGXMsGMTrrEq7di1IRWsrbEIohHnO3dfZw5FKYZ4yuWhtlWoeDkun09hwsPCc04nPEAzimtwSgAjncjia30PThAgx8eFwEFcTKSwuFGFRmBdcZhiLYQKzC5W9LPx4bAwTPR7Hj9UKo3PmDCZ8KCS6J6Oj0liQK3c4Bp7NYsfFJcxtbdj1sIfH68W19XqpVggG4bFZuxaGh/uKcP+fVArPh8N43unE/YbD4m1ZKJRAnML1Dm5MmE4v7HirFZuSpibYhVgMoR72aI6NwRYMDsKGTE4iz4wr/bgXUD4vYanGRukAbzBgfrNWEwtMsteVhR6JcN+jo/AUcS+zQAA2KZ8HiTEYROgykRA9GQ6FsWw/Exn+jNXKuApXH4qwKMyJXE5KiTVNQjocDmKywlokmYzkoWSzMAQjIzh+eBjX8XhguNi7wuJw/H7ck2hiAuTk1CnJdalURA2TCO/T2AjPjdmMc265BYbW64V72eOBAWtthXHauFGqASqViyMrSnpfYbnA48E8Wqh4mseDuRwOS6PETAYhWSJcS6/HJoU7pufzaIdx/DjmIQvETU6Kl4VLkONxeEb7+3GNxka8xon0XKZst+M3l1OzrXG7kevG95HP428ueebKw+mlzF6vCGQuVKtG4cpAERaFOcGicCwURyR6Kexl8ful82syKUltkQiy851OkIneXknQ5XhzuSzt41korr4eRmdoCKGfWAzX4C7IPh/ep6VFpPrZu2IwwGBylYHbDaJkNmOnp2k4JhLBDszlWlgHZiJpyshaDgoK1zuCQVGsXghCIVHCHR8HGeGctaEhzLd4XETmduzA3K9UJPwbCIAwNDbKJoUVqk+dwvyz20UvqVIB0bHZQEA4r2xoSCqILBbYg3PnYAucTrzHyIgIzTFYLM5mkw1bPo/XVH+hxYUiLAqzgsWUiESKn/NYOBzEx5w7J/kj3H/DZMKOhnc33KNneFh6CHG8uFjEtSsVXNflwi6ouxvvzYbLbhftBjZoQ0NS6XPjjZLAy03VRkYgJjU0hMqhZBLXNhgW3lW5UgGZWmiei4LC9QC9HnMpkVj4OT4f5mV1p/X6elwrGsWcczpFIddolAaoXEHU1AQ7EQjgWG6AGo1iLnd34704x4Q1W7jPkN0u3hK2Q3wv4+MgYRMTuP7wMDYjxaK8FxE+N6tfc/JwIIDPpbA4UIRFYVZwKXOxKF6FeFz6iXDSbaWCSc6hn1RKhNjyeZCP3l7ZGXGybamEazN5SCal4ufsWVQMRKMgNJww29yM8M/q1XgtGITxammBsQmFJM7M5cx+P4wPi1lFozCoF5OHMjamSpgVliccDszThSad2mySHM8h2OFhkBJWnU0kxEOyfr1sXrgSZ906zLmNGyXhlbs9c8uP2lrJeyGaGhZiuzQ8DLsxNAQ7YLXC60sknhMmUQMDIs3P3hWGzydl1srDsnhQhEVhVrA3hXNWiGSyVntZRkclzGI0SuY+kxSnU2Sxk0nRbGF5bRZvyuWQZ+L14u9oFEYiHMZ76vUwbpEIfut0uN7kJAgIx8SZmJTLuLeVK2Hk2LvC5csLDQUlk1KSraCwHFFbu/CqISLxjHB5NNuB2loQg0BAiEtDA+ZvKITNSGsr5m1TE5Jxm5ux4WAvy9gYqo9GR0FyuLszazRNTkrlECfOViq4F7cbtiCXw4ZmcFDmdW+v3D/nzlQn4hKJTovKZVkcKBOsMCNYhp8z5FkOu5rAsDZLTw92JAYDPCPhMNyto6NSBVQqwWhFo3gum5Xkt3IZBodb1qfTMEhjYyIgZbfDq3LoEIjJ4CAM2fHjMDw1NXAn5/O4p0AAr61ZI1L+ExMipb/QxNnq/kIKCssZgYDkqs0HoxFzRqeDvdiyBfO5sxOEpVzGXLXZcGx9PeZ8KiU5bjt2gFxs2SIe3aYm2APeMDkcsAPZrGim8KbFYpGuy9zviKsLx8dxnUQCtmBwUM6122GzuMEqh4VYn8ZuV9VCiwVFWBRmBDcyrO5CXF3GzGWFrKHCu6ZIRIwOZ/qPjUmSbjoNYsI7F05inZxETgr3DeKO0PX10gZg1Srcw8aNOHdyEve5YgXuke+Jk3hZ5TKZRPJfIgED6vUuXPBtbAxhJwWF5Q6zGYv9QhfrQACEJJsVYbmJCaJt26BIHQhgXnPOSl0dCMKbb0qSbmMjOr23twsBMZtBZBwOsSWsjk00lbjYbCBZ3J/IaMTx/f2wB42NmOPcYuP0aali4g0Ug69LJIrZClcXirAoXACW3Seamr9SLktXVCYvPT0gJRMT0lgwGkWc2G6XSiIi/ObkNU0TldxMBtd1u2GErFYYJKNRdBrWroV7uL4eBqajA83TampAKBoaRNDN54N65u23g0CFQnjvYhEGbLaGjdPBujNKzVZBAWBF2IWo4HJvIq4Y2rhR+gul0yA+er2Eka1WaZdRLmPub96MebhqFa5ZLsNOcP7a8DDmNbcNqVREy4l7kVUn5UYi4rXlysRTp+BlSSSmJtRyOTNXPRKJsJxSvl0cKMKicAF4oebKICKR36+uDtLrcWwigd3R0aMyoTlDP5GAkbFaJdm1UpHYc7EoeiuTkyAqdXUwLNxUUKeDQUmnQVxYejuXQ8iH2wLo9TBAsRjugwnRmjW473J54YmzHLdeqFS/gsJyQSi08FJnn0/0lthOjIwQ3XMP0euvi4J2pYJQcmsrCMkbb8D7kc3CFg0MYJNiMklCbzwuBKauTrwqOp14V0olKbPO5UR+n0g2WVwJNTiI5yMRSbqdHhZi6X7exCy0fYHC5YEiLAozghNaWXuFq4NKJen/E4vBGAwOwr3LRCKbxd8uF0hKLic5MGxIWN+ADUooJJ2VOVHPasVrK1cKUUqn4T4+cgT3Ew5LySSRGLs774Tbt61NkgWt1oWVMbMxrKm5Mv9bBYVrGSydX91zZy6Ew9JFubMTm5RcTjwlvLngDcyqVbJhSKcx/zMZ2CKu7LHZQGJaWnBMLic6LOwVzmREXp9VuDMZkfAfGYEnuLVV7Em5DK8NJ91y6KeamHClEHubFK4eFGFRmAJOqK3WYCHCRNbr8RzntQwNwRB5vejjs3o1Mu05GY6z9TnhzeuFsSmVYPRYaZKJSz4PAzQ4KG5Yv18qiJqbpYRa02D88nm4lFme+/RpuJU5Xt3cjJ1doQCisxCovBUFhbnhdmPxL5fnP5ZzTUwmbB46OkA27roLdsNsxvzV6UBKOjpggw4exEaG2wTo9Qj9cqVOoQC7kUrhGrW1sA8c+s1k8DznzlkseI09yEw2ikUhLn19sFucp8NhoWrxuJoaXEPlsVx9KMKiMAXFIiZ5tYeBwz+JhLhw83mZ6CtWQO+EDQiHfsbHRXGWGxpyt2WHQ7qlssgcx665Kkeng+Gy2aSaIBDAbqi2Fp4Vl0sSd81meFV27MD9rFsH1zXrv5jN839+3n0ttORZQWG5IhQCuV8IWltBAuJxJNAWi7An69djk8HzjeX8V6/G43weP8GgyOhXa0P19MAWGAxiM7hvGPcHYlmCeFy8v6WS5LoMDUmfM5ZaOHcOJIXz4qrDQtVaLJxUrHB1oAiLwnlU56xUd2bmcFChIAlyfX04nssLXS6QA1aa1OmkiofVbMfHsTMrFqcaFrdbGhh2d8OQlEogJ9wB1u0WDQa7HW7idFqaG5ZKSLTdvRv3oddL3ksmA4M5H9h7w2EwBQWF2cEVdwsJi5jNmL82G0IxmzaBbGzeDKJQKmFeE+G4cBge0cOHQVD43OqwLlfzsMeDlWo5YdflkkaJfJ/sGeIqoFgMz9fVIZTc3g6ywk0XWbeJ82AYnMvClU8KVweKsCicB+espNNTcz2YvLCmgsuF586dg/v24EF4WSIRTH6u7mGvSjQqpcTj41Plr51OGJrxcRAW9r7o9TBgFgt+22z43d2NvJSaGhgvNmLZLO6puRk7tptugmHktgALEX0bHVWhIAWFiwH3A6su/50NHR2ihRQO47x4HNV8b74JIuF0YqOSyyH843SC0LAXRdMwp3lTYTQSnTiB42w2HKdpU3uasb1hATmWPOD+ZDodPLOFAq7LkglDQ3gPlv+vLnPm4gIipX57NaEIiwIRTc1ZYcPBz3MbdrcbRiYaxcSdnISHI5dDC3f2mrASJJctahqOZ28J71y4qZnRCENx9Kh4dZiscAv5lhaQlbo6cQ9zz5JkEkbrzjslBMRy4qnUwrwr3FhRqdkqKFwcFioop9dj7jMJueEGbC64m3MqhXnLJKi2Fgm4PT2wBWYz5jw3LyQCKYnF4HGNx/Ee3DOIS5sLBSEjkYiEnUslvJ5OY/43NxMdOIBQ89AQ7oe9t2yrqnsq8Wvs4VG48lDmWYGIMOFqaqaGgoikOieXkxyQRALJtS0t2BmxOFsuJ72BuI8Qe2S4I6vBIDHk6moDFoVjxVyvF8TD45HqoZEReFc4KZhzbAYHpfNydzfRrl0wOJzzMh+KRVx/oY0QFRQUpmKh0v3t7bAJhQLmrE6HTcY73oG5OzoKwlBbC8Lh8SA09OabRNu34z3MZsxVJjFEeN3hwObI4RBvcG2tyPZzkqzFAjLCzVHTaZHwHxyEt5h1pLgcmzde1WEh9rwoD8vVgyIsCkQkZIIz6BnVInLj4ziO27S3t8PIsGt1chLXSKWkJJBLEIlgOLjEkMlKqYTrvfkmjmE1Tbcb5w8NwWW8fz9IjceDa3Pjs6EhEJndu1F5YLeL8mUqJbu3uaCqghQU3ho48X0hCag+H+bo4CBk93t7pZfQ4CBIRTCIDVAggFDSyAjsi8UCLysRXmMCMjoK+5DJ4HXuUcYbI1bT5l5DhYL0NOPu7d3doszNHl2WWPD5RPiSw0I6nRCY6s7OClcOirAonA/jEIkAG5GEgyYmpIvyxAQmcns7yILbDQVanU5UIScmpPkge1RMJvxtMEjmfTgMA7dqFa7FAlN1dTAmDQ3wtPT0SFmy243rrViB++7pQUWB1QrCsmkT4tEGgxi2uRCNLryvkIKCwuzweiXJdS40N2PxNxjgZTEYMGdvugnEg0XiamvFQ7tuHdELLxC9853oV8bhJc5hKxYRZuLGp9Vl1FzJwyJzrKzNLUQ0DV6WQgH39vLLeL+TJ0XbhauOpoeF+PH07s4KVwaKsCic7/lTLRRHJOEgrvJhQnLiBCb04cNQo+R8Fg77sHrkxASuVyrBSFitUjpoMknZ4eioNEe0WMTd29ND9O53E+3bByLi9WL3Ew5jB3TyJAzVpk3i6bHZJEdmPlVbbke/kHJnBQWF+bFQFVyWMujvR2nzwADIRGcn5nIyCRuTSmHeNzZirvf24rjmZpANllmw2SCx39oqnZhLJdgiFoTjkFCpJJVErBNFBHt17tzUQoHRUWkvMpO6bbU+y/TeQwqXH4qwLHNU9wqqLmsmujAcxGWAbjd2Lno9DEgqhYnLAm+c0MYlzmYzDAQr1fLfLBR38iTet1yGocnnYaCcTlQg2WwwhExEduwAcenuhrGz22FY1qyB61jTFhYKSiSmhr8UFBTeGvR62IL5vA319bApdjt+HA4k4K5bh3O7u+FR5d5hTifR1q1EL72EEPHAAM5xuUQcrlCQXJPq7uosRMlCdy6XSPiPjcEWDQ/DVo2OwjN75gzRjTdCKqFcBpnhsNB0wTjuj8avK1w5KMKyzMHKttXEhUiqhqq7NhOh/8fNNyMprbYWE75chlHg7H8uHeTy50wGpGN0VPr7cANCVrxl4Tc2XkNDRG97G97vhhtwLU6I8/tBZJxOhIPeeEPCP0yK5pPV58+loKBweeHzTQ2bzIa6Osz/SASbjb4+eGQ3biQ6fhybk1tugS2orUVeC+fZsdyBXo9zTCbYq64u8b5YrVIFxCq3er10nC4W8cMlz6z/VCph48Pel+oeRcXihcRk+udV/YWuHBRhWcbgicUZ9dVdjBMJWfxZZr9YFALCxITjxdmsJLmVSrLbMRiEDKVSeMwx5cZGokOHpDdRIIDjrFb8Hh6GMXK78drAAEjM2BhcyZ2duLfRUXhqJibwXo2N8392zstRUFC4/LDZRN5+NgSDICXsbW1vR5h5xQrYgNdew8ajowPz3WaDd/WllxAGZrvBIR+PB7aJG7c2Nooid6UiFUFE4pHhhoiVCuxWMglPT309vMfbtsFGcTh7rqaHmob7VV2crxwUYVnG4J5A1cSFUe1xGR3FbubwYShT9vaK25R3Oyy5z0aAr5dMSuUP71Tq6/GblSo5Du3xiEt340aiV14h2rkTnpTjx1FR4HDAYAUCMGyvvUa0YQM+S20t3tvrnftzK7KioHBlUS1lPxfq6jDf2S7092P+rl8PO5NMEt19N8LG4bAoW3PVD3durqkB6ahUUAQQCEiOHHtxWGqfCDZlchLXSiRgD3p6pETZaARB8flEOTuRkM81PSzERIW1WRSuDBRhWcZgUsLEhaFpIBvcAZXzVUZHkUsSi4kYnNEIY+Jw4Dg2JBxD5t5EkQiuyU3MAgHEqctl/AQCUmbIDdVY4TYchvG68054WVIpVBY5nbiu1yvVSAupDFLhIAWFKw+HA3NtLgQCOIbDy1u2QMKgvR02ae9e2IG1a0VAbtMmoldfRYIt568EArBJHg/COY2NEhpm4Tj27rIQHBE8vZWKyOsHgyAqg4O4/5Mn8T7d3bKhmylfpZqo2O3zf26FS4MiLMsUXPlDdGH+ClcHpVLS+r27WxJkzWYcMzyM5NZ8XuK9ExMisMQaCdVicbxDCYcRm3a5RATO6cR5bW3w5mzaJJ6d7dtxj/v2wZC1t6P8cNcukBju1Dqfd4UVexUUFK4suN/OfKitha3gxoaDgzi3rQ2kY2SE6Nd/HV5W7jHEuSSlkoSYucKxUoFN4IpBk0mqgtijYjZLSw+DQbShxsZwPoev43Ek+54+DbvR3Y33qNZgYbBcP3uOFS4/FGFZpuDGXdMrg4iEwGgaNA8cDoR/Nm8Wb0siIdnzJhOMCpG0dHc45DXOfdHrMZmtVjEMBgPugwmUXi8lz01NMGbnzhHdcw/KFisVECcuPbTZJMdmIRU/XMKtoKBw5bEQ0sIlyHV18KTu2AGJ/JUrQThefRV2orMTrxsMCAefPg37UC7DprD4o8WC41atErvCJMRolARczmPhzVR19+dkUsJHp07BRg0MwCZy65HpYaHqz6rXi6dY4fJBEZZlCBaEI7pQe4XDQRzuyedBRlwuGAiTCa+x4NqRIxL3ZYl7FlFiobhEAte1WvE8d0Q1m/FedXVSCllXB8PQ3o73P30abuJSCfovdjuS8F58kei226S/kF4/NWl4JoyPz++BUVBQuHxYSFiISLq4GwzifbXbkdei12PD9Ou/jorAQAB5a5ywSwRbxAKVNhvsFodsuBs8J+CazeJBMZtxf3o9Qt0mE46PRrE5s9uRV3PDDSAuRiNICfdRm14NxbZQ9Re6MlCEZRmC+wZVNzxkcDiIPShGI4zFli0gEhYLJnI0imuwSiQrR5pMspvhMkFuQuZ0iqBcLgdjZjSKnDbnuExMQI+BVW7vvhtkxWxGCMpohLFyuWBQuCPrfOBSRwUFhauHhcjWsy1paUEIeMcOSBesWYPnz5yBXVmzBvZH00BsolHk1bFno75eNl0DA8hl0TSxSywWybbN4ZA8lkwGv998E/YklZKO8xxGSqWk0SN3f57+OWIx1V/oSkERlmUI9rDE4xfqlVSHg5JJhG6sVvHETEyIlP+bb2LS8k5mchKT22aT3VKhgGuxt6WuDjFqIjE6moZrNDTgdygkfYQ2bpTSw8lJuHkPHEDvoKNHETYyGucPB8XjSiROQWExYLfPX+Ks00mXZrMZxINVZsNh2KDubqI9e2B3fD6pDrRaYdMaG6V3kMMh5cU6nSTZc5d4m01IFNswnQ52cXhYGiByGIlz+M6dk1YA6fSFVUHVRGW6jL/CW4ciLMsMqZQknU7vzMw7k2IRuw2jcaryo06HSdrbK72EWMmW3Z/8N2fjJxJiMNggjI9jB2M0gow0N+M+jEbsdjZsACE6exY7rdOncd3mZtFKcLvxHpoGr8xc4IomJcGvoLA48HrnV4ENBGAfmpsl0f7NNyEOGYtJD6C2Njy222EHJiZAVjIZ2K5QSOxaNApbw9pOnLvCVZDcDoTDVnz82bPSzJHDRxw67++XjvQzqdtyLovVKrL9CpcHirAsM7AXhAXhqpFIyK7AapUmY14vJnk8jkluNmOnYbdjYnLYh3NSWFGSk9u4W6rTCUPDOgfBIEhTPo8Y9MQErunxgCi1t4s41OgokvDefBMk5vhxCSPNp2rLITAFBYXFwUIWb51ONFbMZhCPsTFsOBob8VxfH7yuvb0gBitXSmib9VjKZdgesxnnu1yysdHrQUq47Qh3k2dBTKMRNvLcOeTK9fRIRdKJEyBIqZRs6mYK/XC1ENHUXkMKbx2KsCwjFApSvpzJXJj3wV4I3lGMj2OCnjyJCVsu4++mJsSHuSSQ27U7HPjNpGV8XIgLe1nGxvCYjUUgIJ4ezv63WOCWXb0avw0G7Lq4TxF3aOWSxbnA0trzHaegoHBl4ffPrwIbCOC3z4cNE5cUt7fD5phMeC0QwEaEQ8rFonhc8nm8l8sFe8HCcCxgmcvBxlitUn5sMkmn6clJaUvCNmdsDL9bW3FOJAK7xeJz08Xi+DkVFrq8UIRlGYEF4qaHgogkHFQuY2L290sTwlwOHo58XiT4q3UNOLueE28dDjzmHQu7Uzm73m6HwSkUJHGWS58bG7EDCgZxjtM5dbezaRPuxenEOfN5TriaSUFBYXHB3Yzn6rXDYeNgEMdxwq6mSe+haBQEZnQUdqa5Ged5vaJize9hsUiImjdF3OusVJL8OpNJ7JvBgN/d3biP06dxTl0dKoVCIdikmhoQl5nCQtXkbCbNFoVLgyIsywTVEyYWuzABNZnEhB8awq7l7FkkvvX04Dd7V4JBPJfJwBiMj0vrdvZilMsik81uXqsVE5gNR7EIQpLPC8Gpr8ex0SiIy8QErtXQgL/Z9arX43XuJD0b+B6mkzMFBYXFwULKfVmd1mbDsevXgyA0NyMU5HDIhiaZRDIse1ItFhG9DAQk/M2VhBy2TqUkdDQ+jmuyV5klFiYnYRMjEdi7dBr3EwhIbksyKe1EqlFNUvx+VeJ8uaAIyzJBdZWMpokOCyOfx2ROJEAmJiZgOMbGMHFzOeixsLpkJgMSMj4uGivxuCS28UQ2m0VjgUsEg0FMeJ9Pyg11OuyaWCvF64VB6u1FCGpoCBVCuZyUQivvioLCtQVWnZ3L46DXwx40N8vf7IH1eETwLRCAnbHZYNu4+sdggNeWOzCzXeO8FtaSMplwbKkkuXK5HOyY2w27xwq30ShsE3uAGxrQGZpVdg2GC4XiOBxkNCoRucsFRViWCTiPY7pQHNFUsTiWv29pgcu1tRWkJRIRaWrevUSjQiA4uYybjVV3a7ZascPgvh/cOZWNiV6Pa1utuLbfLzshrxdEx2QSDYWWFlx3uoZMNdhATCdmCgoKiwu2HfMdk88LWVmxAmHq+npULHq92IzwpikUkspDnU68L243bE0qJRWNHBbKZPAeTFS4keL4uGzK8nnYwOPHRXeltxebrlgMm6kzZ7D5mp6fU51w63Qquf7LAWXOlwEyGZGjn0mKn0lMTw92NdEowkL9/aLLcvQoyglzOUy8SgXH6XSyY9HrJTbM1UFWK8hDOo0J7PWK6FulgnM9HjEADgeOqanB7qahAYSpqUlCO5OTkpw3G5R3RUFhaYIJw1zCarzRCIdlsedcN5MJxMTtlrYeHE5mDSluhsheXBa4ZGVcbtKq0+G64+N4jsuVuZt8IiEKtywaFwzChoVC6BxPNHueitksYW/VEPGtQxGWZYB0GpNvepNDBoeDymWoS3LCWCCA3xze6e6WSZ9Og7wQgZREIkJCuMqIk21ZCZe7NJdKUtJsNuOccFiMhN8vYSYOTSUSMFyhkLiJZwOLR811jIKCwuKhtnZhXhZOkLVaYSMiEWxizpyBXWAPSiQilUHc1NXnQ5Wh2w1SkkhgY2W3Sx4di1xySIh/+vpgb5JJEA3WhmFRur4+kCRuvDoyMnP/oGr5fg4/KVw6FGG5zsFNB4lAPmbrt8PZ7mfOIOTS1yc9OA4exHOZDIwMNwLjCiAmB7yT4H4dFgveP5WCwampgTs1EJAwkscjiXh2O4xEOAxvTygkycA+H4xNpbIw74rSXVFQWLpgmzRXbgcns9bUyCaqtlY6w+t0sBGs99TcjOs5ndjoBIOwGaEQrsdVkG63XJs1VTgHj0PWxSKIBnerj8VE5ZsrgjgHJh6XQobZxPH4c8xX1q0wNxRhuc5R3fOH6EKvAxOCWAw/TCR0OjyenITLtbqR2MgIDAEnq8XjmPClEo7npF6nE4/ZI+L3wxD4/dK4rFTCjolJTigkuxBWsIzHcY8uF64zl+eEvUjKu6KgsLSxUC+Lpom2itMpApf9/SApDoeUL/t8+Ntux/MuF+yV2w37Eo+DZOj1sHUsr8+hGy6JNhiwuWptRcVkNIqy5tOnYZ9aWiAkV1dHdOyYdHCeKczFRIXDRqrE+dKhCMt1DM4jYTn8mXrp5HIgJA4HDIDHgwSzpiZMvuPHJUmuuxvJb0NDU4WR2GVrMEg4iCuEJibw2OUSPQSnUwyKxyMZ/FYrrj8wIHFrnQ47pVIJu6P5vCtK1VZB4doAh2HmCpOwB9fhABmJxUBSikXYnUpFGqISYe6bTEIgfD7JeWNVWpbU5+IAi0UE4DgxVq/He/T343WHA8/19uL5eBx2s60N10skcO5MYaFqYblAADl5CpcGRViuY0SjssDPlr9CJEqOiQS6oWaz8IAUCtA/0DRpatjdLd2Xq/txTE6CZOTzmKAul8hTs3clnZaSZlbZ9flEq6WxEeezuuSKFTA63BqApbVnQz4/f18hBQWFpYOamoV5Wbj1BxOPZFL6lq1eLRWHbI88HhASzodj4sOClpxgazJJKMjhEO9NOo3jBwfRCuDECeTD2O14rlDApu7YMZzHoSWzeeawEMv18z1w/p/CxUERlusU1U0OZ6oMIsKkZ/0AFoI7eRLJZLkcPCk2Gybq6dNEW7Ygt8Vmk/JjbhbGPTqIcE1uKMalzJyp7/UKgbFapzYgW7sWBoiVJotF3IvDAU/NfN6V8fHZc3QUFBSWHrjKsFic/Rj2sJRKsAGJBDYz5TJsTrkMrwsR7BB7Qzi8U1MDr204LF4W7iFEBFtjs+F5TZONnV4P4jI8jPfW62G3Dh6U3MCxMRCmkRHYu2x25rwcbohINHeui8LcUITlOoSmSZiHaGbtFSKQhVIJkyeREM0VzmE5eBAEgN2cfX2ijcDu3EpFFCN5B2E2iwHSNJCOoSG5lsslxxmNOKa1FbsWbrC4Zg0mOO92vN65vSvc1FFBQeHawkLVb1n8kuUKOPycSkFU0mYTnRUue2aBuUoFG6tyGcdxTzLeSDGZsNlgq1wu0X86fVpagvT3y/FjY1K5pNPhMVcfzZTLUt0oUfUYujRcEmF56KGHqK2tjaxWK23bto1eeOGFOY9/7rnnaNu2bWS1Wqm9vZ0efvjhWY/9/ve/Tzqdjt773vdeyq0pECYQT2pWkZ0JHEIZGwNxSaUwAUdHRbq6txeEZvNmVO4YDNhJeDzYtXDuSiaDa5jNcH9yXguRVA6x5Dbn0rAnxulE11U2QNx0rLFRmpzN512ZjZQpKCgsfczX1ZgJCFf/JJOifD0yArvR0CCbKa5A5DJnkwnHcZsRTn7lDVMmIwq5k5M4r1AQe5TNgsCwl+eVV6RcengYNm1yEvfHhQjTUU3MmDTNpUWjcCEumrA89thj9MlPfpI+97nPUVdXF+3evZvuuece6uvrm/H4s2fP0r333ku7d++mrq4u+uxnP0uf+MQn6PHHH7/g2N7eXvrzP/9z2r1798V/EgUiEuVGFlmbLQmVM9onJiQJLRrFRHe5iF5+GeeVSnLMxARISDYrVUEsSMfVQRxi4hJCvx+EyGqVJFvu28GJck1NOD4axa5j/XoYh5oakeqfy7uSyYg3SUFB4drDTA0Ep6OuDrakthY/Op2EtdNphIlsNtiCSkWaq5ZKqD5kPSqdDvaI9ae48aGmwWbZ7bBF1aTi9GmEnUolvJZMir1yOsXe9vVJk8fpmJ6QGwyqBNyLxUUTln/4h3+gj33sY/Txj3+cOjs76atf/So1NTXRN77xjRmPf/jhh6m5uZm++tWvUmdnJ3384x+nj370o/SVr3xlynHlcpl+53d+h/72b/+W2tvbL+3TKFA8LgSFdxIzNf9LpzGxz5wRNVpuFBaLYUKOjWFy19cj6YwIpIWT01jKmgiExWwWQ8CvVYd02C1bLEqs2WZDOCiTkZ1OoSDeldFRvP9c4A6tCgoK1y5sNtiR2cC5cPk8PMGpFFFnJ4gDVyCGw6ILZTZjw2SzSRIub25KJdgjo1G0V7ii0e2WHECWfYhEQDCiUSE+J07gftxu8Zyk09IuYLYSZ8710+ulQklhYbgowlIoFOjAgQO0Z8+eKc/v2bOHXn755RnP2bdv3wXH33XXXbR//34qVmVaff7zn6fa2lr62Mc+djG3pFCFRGJqWKQ6NDQd8Th2Euk0yMrEBCaepkGKmhNdYzHsbKJR0U9hmWm3W0oBWWafvTvFIq6fy0lPILtdDAfrILS2YtLG43DZbtyIa4dCkpA7l3dFkRUFhesD3P9nLrS2IkxdWwsCwTkspRLsRUcHbFhtLYgNSy8YDNIWxOvFtRwOCfuw8GWlgnOMRhAJu102U2+8gQ0XVxp1d+N8bszocsGWHT48c28hIsmZ4aWvWglXYX5cFGGJRqNULpcpxNKB/41QKEQjIyMznjMyMjLj8aVSiaL/TTVfeukleuSRR+ib3/zmgu8ln89TKpWa8rOcUalgwnKIhntvzJS/kkxi4r35JsgAn8MJtcePizqt3Y7SvUoF51XHmvV6TO7qx/m8vK/XC0LhdEofIRaBCoUwyVta8JhJU7mMEJHfj5yZjo65P7cKBykoXD+Yr+dOdbfnxkbYjDVr4IlNJOBVWbFCvCZ8TYcDdojz7CwW2EuuQOKKRfYOsxfZ4YCn2e3GBnDlSnhPuDN9by/OCwYlIXdyEvYrEpn5M0wXzJuN3ChciEtKutVNWwU1TbvgufmO5+cnJibod3/3d+mb3/wmBebLrKzCF7/4RfJ4POd/mpqaLuITXH9glyWDPSYzYWAAhCGVgruU+3IUi/ibtQkmJiCMxP04YjEpz+POqPm8dGlmqf7JSVzDapU4stMpfTuIcNyGDZJx39+Px9kskufY2MwUzmJwN1YFBYXrA9Xlv7OhowObmZoa2DG7HfaKG7A2N8MG8W8uBPD5YIMiEfzmzVqhgGOIxJvC9qxcFi/vxATsY7Uy7qFDIn7HeXrpNNRxy+XZk2pZ2I4I581WWaQwFRdFWAKBABkMhgu8KWNjYxd4URh1dXUzHm80GqmmpoZ6enro3Llz9K53vYuMRiMZjUb67ne/S08++SQZjUbq6emZ8bp/8Rd/Qclk8vxPf3//xXyU6wq5HCYQh04ikbmraioVCMKxgBIv+uUy3J7VJcKDgzhOr5+aUMu6BZmMtG3X6SQBzW7HfbDYk8slk7y1Fe8RDErOC+fENDXhflhVdy6wy1ZBQeH6wXykhZNhieChTaexsRoawiamVEJVo80GMpLNwqtht8MGcaWPwQDbwyKYBgOuy8SHw0IOB+ygywVPDrcLGB/H60NDuE5NDYgUq3o3N8POzgSnE/fFOYAqAXdhuCjCYjabadu2bfT0009Pef7pp5+mXbt2zXjOzp07Lzj+F7/4BW3fvp1MJhOtWbOGjhw5QocOHTr/8+53v5ve9ra30aFDh2b1nFgsFnK73VN+liuqBdO48+hsqrZ9fchJmZjAMWfOYDJnMrhOJiPuyZoaeFecTkxYu31qQm0+P7VXEJEYAL8fRMZigeEIBPAaVxjdeCMep1Lw+LS3y66IaHaxu+rPzLFoBQWF6wfzhYWI4IXt74cNCIVgw4aHYUN8PhCATAabo3xe5BTq6qQikXuOsdAcd6xnsuRwSNVlqQQ7ODSE17gBY6WC0HqxKNVJfj/sXCwmat8zobZWwka8CZzreIVLCAk9+OCD9G//9m/06KOP0vHjx+lTn/oU9fX10QMPPEBE8Hx86EMfOn/8Aw88QL29vfTggw/S8ePH6dFHH6VHHnmE/vzP/5yIiKxWK61fv37Kj9frJZfLRevXrycz++oUZsR0dddqOf6ZkEyCJHBjwVxOsuaPHMFvTcPzFov09SmVpibT6vWS7MaS+R6PyOyPj+M6oRAy99NpHL9mDYyK2w1ClMnACPBx3Lp9vggfh6EUFBSuP3CFzmzw+yVZtb0dC319vbQYKZUQYq6tlR4/3DzRaASB8Xik1JjtGBFsIyvb2u2weTYb7BJ7W+x2/IyM4D0rFfy9ciXCQRMTkkc4m7eIpR04B3AhScfLHRdNWO677z766le/Sp///Odp8+bN9Pzzz9NTTz1FLS0tREQ0PDw8RZOlra2NnnrqKdq7dy9t3ryZvvCFL9DXvvY1ev/733/5PsUyBUtM88JdLcc/EzIZYfHJJMIu69ZhwpXLmHCsSGuzYQdjsyGxjPNPbDaQEg4HEcnOpFIRJVtuvOj1SqfUiQlce+NGvJ5KwcXa0IB74hAQd3KeDax4qaCgcH2CBdzmgtcLW+BygZg0N8NjnM3CfoTDsFHc8T2dhoeFPbPcVV7TRG6B2wQkk+KpLhRgYycncW5vL35zVRFXEJlM+GEphslJ2MCBgdk/g98/NeHW759f9Xc5w3gpJ/3hH/4h/eEf/uGMr33729++4LnbbruNDh48uODrz3QNhQsxNiaJtizHX1c3+/HDw6J86/fDldncjEl79CgmZqWCiVZbi4SyavE2LjPW6WQXY7Pht8eD3zzJKxWcU18PoxGLYSeUy8GbYrXCHdrTQ3TrrTi2ukX8bNC0qUlyCgoK1ydYvn620G9TE7zCfj9Ub19+WUgMy/I3N8M29fTArrhcItOQyQgRMRphB51ObKRSKXiqLRbYNe7qPDoKG8Rdnf1+6a+2fj3OD4dxzugorm+xzG2zvF7xlFssIEvl8twFB8sVqpfQNQqWvudEW1aAnA2sSZDLYfKazSAORPB8DAzgJxDAZMnl8DsSkV0Gl//p9TAklQp2QiyxT4TXWUW3sRHGgWX/V66UXBXuG+T3Y0ezZg3OHxrCebNhNuVeBQWF6wtcajwX2GNst8N2rVyJBq4s4LZhA4hJdcPBQAC2jIsEuB+azYbfnJg7MSEelHJZKoB8PnhU2MvLuXkjIyAbra3YDJrNUpwwl9eEk4O5Sqi2ViXgzgZFWK5RVO882PMxFyMfHxcpfZMJE2rlShCEkRFMRJaTrq0l6urCzqS6k2mxiMmbSOBv3n2wUq6miYibzYYJncuBrHBi78qVuIdUCiGpjg68xmJMc1X9sOGYLaFYQUHh+sL0kMl0tLUhDESErslGI+xRMom/Wfl7506QhkQC3phgELaJ1W05LMSbsHIZpIE7ybtcottSnZ8yPo57HBqC8i2r55rNIDajo9JjaKYuzoxqksKJwPMlHi9HKMJyDWJ6DgdPmtlQLmPSZDKYsEwq2A3a3Y1EMb8fRIJVbjlZjWPCZjN+YjFMTIcDE52z441GkdYPBmFAxsfhpdm5Ex6deByTPpEQY8DelXPnsDuZDfMlFCsoKFxf4L48XP47HZy4Wihgk+T1otT59GnYIosFFYmcvzc5CVtVWwtio2mS91epyKbPYsGmjDvQ8z3wZstuJ9q/X8Lb4+PSiJGTb3t7RbtK0+b2suj1U6uEuD2AwlQownKNoVwW7wbRhVVCMyEaxWTy+5HHMjKCBNdIBDuDXA4EwmoF0Xj9dekrxBVBLAaXTMr7sxw/u02rlSSDQRFb4nLoLVtw3UwGYanWVux+uD9IddPG6ahUphoUBQWF5YHqLsczobkZ5IAImx+WUOCmq5wXd+utsHfxONHatVIcQCTdm91u8bIQwVZy7glXNRqN8IKMjoL4cDFBdzfuo1CQPBludzI6Kl7o2TC9SigQmKqIq6AIyzWHakVb7kg6V3kvTxB2NzqduEZLi+SunDiByTExgYk2MiKt11MpaT5oMuFc3mlwCIirhoxGEBaXCwloY2P4ue02SYYzmzEJi0V8jlWrcO3+/rlLmaPRuXN0FBQUrk+YTCK3MBNYrZbD01whNDAgvYI2bpSwOfdFa2gQr7DLJTaMN0UmEzZznJzLGlMmkyTdnjgBm+pywdaNj+P62SyIVDQKz3EggE3ffBVA1eSM+w6VSpfl33hdQBGWawic48EibdVVQrOByYHXi93F6CiIQTYLAhGNgoRwY8KjR0UUzmCQcmSrFb+5jJqVIXlSsW6CySRCTrw7cDiw8+Hk3d5eEKOaGly/WJSk3pnAsd+5miAqKChcv5jef2c66urgPSZCYv/KlbBHvb3S/8ztJrrhBti7kREcx2EhVs81GES6gdW+OZelUBBNKSLYrlOnRM/K6UQ+zcCAhLcnJkCCbDbY3vnIh9ksDRiJQHRm60m0HKGWgGsI1Tor08nLTOBdSW8vyAg35mpsRCleby8mFmusNDVhArILNJ3GLqRYxKQbG5uqossVQrwDIcJvDjcNDyN3xekUAtTbC7K0apXkq4yMSMXSTFDeFQWF5Q2DQcLCM6GmBgSFwzkeD364MqhUgt3jtiBjYwgLcU5cOg3bWiyK19hggD3LZqUSifWl9HoQmEIBBMVsxnlcxFAu43o2Gzwm7DXhliVzoZqkcCXTfP2VlgsUYblGEI1OLeedTySOCIOeZafZm2K14jq5HCbR0JA0Juzvl3bprFjLHaCzWZHL575F3J7d7ZYJ5fcjHDQ4iONXrEBIiWPE8TgMSSAg1UWp1OxJw6w4ORcxU1BQuP4xn5eleqFvboYdiseRL8eSDA4HxDKHhmCzGhpg31jptlCQKh+dTmzP6KiEgsJhkB6dDj9vvgkixFL90ShCRX198OIkElKI0NMjPYxmg043tZ+Sy4X3nSv/ZblAEZZrAKWSNBgkWli1DHcy7ulBOKhUEvG2gQFMsrExkBO9HjktR47IziKTwWRmtcaREZmgRJjcHFu2WESnIBTCuQMDRJs2yXEOB5LS0mmizk7Ji4lEQFZmIySqMkhBQYFIyMNs5cGBAGwc59bV1UlIu1gESfB4iG65BSTi7Fn8zbINTFBKJUmWtdlgwyYnsWlzOEBoWNXbaMS1JiZwrNsNL3UsBu9OMIhzYjG8P7c8matUmwibyGqSMh9ZWy5QhOUaQCQiIRHWQplLi4TVaicnMUk0DYPd4cAEYj2C06cxyZxOec44TfvYZpPcFRZCIhIpayIhMjYbDMDAACbkLbdIKCqbxQQ0mRB64lLo8fHZwz0sla28KwoKCkRzV84YjbA3HH4JhSCtkE6LnL7bLTaIuyyzt5e91vm8dHautj38vqkU7Ch7QHQ6ooMHsQkzm0FK4nFs0CYm8DxrXXEDRZ9vftJS3RyRK5PY5i5XKMKyxMGDnCfOQvI5xsYw8aJREX/r74cXJZWCu5Klqe12uDgPH5ZdQzqNsFE+j90Ma6domuxCOEnN4xG9A78fxwwMwEVqNuPe3W7kyuTzyF3h0FYshvOnkySGUrVVUFCoBtuf2bwsLOfPf69ejWMTCfywou073wk7NT5OdNNNkmhrNIIUcFNYTRN5/WwWm0CLRcJIvFljbzU3V+zpgf0aHgY5KpdFKyaTwfuyRMVs4IolDh+pMmdFWJY8JiZE6K3679nA2imRiPSjKJXw09CASRSJYLIaDKItwCXHrGjrcOBxOi29NlibwOXC5K0OEdntRFu34vieHqL3vEcy8KNREKVyGeEg9rqkUvh7JrB3RUFBQaEacy3cDsfUkIvHgw0ZEbwcXi/sF/8MDspzVivsl98vVYtcxsybNSYahQK8JNmsNH/l3mtOJ44bGEAeS6GAjVp3N2yp0ymFCvMRkJqaqZ6Y5S4opwjLEkYkIvkbmoZB7nTOfrymgdTkcpLzUiwi9LNqFZ4/dw4uyUgEk9TvRykzJ7fm85LzUi1dTSQicSxh7XBITyPu5dHXh2ty+3WvF0bBbAZhYsIVj8OwzFbKrLwrCgoKM6E612Qm2O0ia+/3Q+k2m4UXJJkUjanf+A30BCqX0SKEW41YLHiPXE7yW2w22L9sVmyixyOl0Ho9yIfRiPfM50FazpyBLWtqwmMW2eT+Qi6XeIRmQ7XXiCX7l2sCriIsSxTsKmQvQ3Uey2wYGwOZYHnnQgGTMRYDYRkfRzgomcROIhiUyh29HqSCW6ibzWDy2SwmISvrsneFS/4qFbzW2ornDh6EIeBJHI/jfTMZou3bpRqIexTNBNWNWUFBYS5wgu1M8Pth95JJqbjx+WAbz51DMq7Vig2UTgeiwT3OOPRjNIp6N5HYI4MBtpNzAzk0ziJzhw/DTjudCAdxPp/BgJyagQER2uS+RPn87OXaRPIefEwwuHy1WRRhWaKozlXJ56cqMM6EyUlMKpbYTyQwAYeG4KngOG5/P0r02CNy5AgmqF4vOwpWf8xmJem1uhJIrxdvDDcbW7ECxESnk+z8+npp6+71ijeFdxqzlTJP75WkoKCgUA2uZpzJy8IFALxxq6mBYFwmA7uaTOJcnY7o13+d6KWXcHwgID2ErFb8sJK4TgebZjDATo6Pw4ZyWIhVvtnLEgrB3k5OEr32Gp7ftQuEqVKB7dTpcH2LZf7uzMGgHMMtTOYqjb5eoQjLEkQqNTVXZSELeCIhkyCfB9FIpUS8bXwcEzOfx+RpbRUPCLdUz2ZF7Cgex8Rkz4tOh4k7OSkdnznJrKYGhGTvXhgAo1Fk/FMp7CK2b5fwFuu5zFT9w9VICgoKCnOhpmb2HBDOQ+EGrn4/NkyBAELgjY0gCh0d0tm5s1M2bDodbB3rTRWLYpdMJunAzOEjDjPl89gEci+18XGUT6fTONZmQ9jc54Nt5kazrCQ+G/R6sb/82eerMroeoQjLEsP0XJVEAmRgLkQiGMylEo7t65MqISJMVp44qRQmGHtX0mnx3HDn5VhMsuGJJLbLwku8Q2GBpdWr8TiVgs6LwYC27wcOYKfhdmOC6XSSfDsbAZuv87SCgoIC0dSqnukwmSSJlgj2bs0aCRVNTIgn5tZbiX72MyE1Dgc2VVwmXSrheiaTdLhnL4vHg80l61Vls7BxZjPE6wYGYM8PHIBd3bABj0dHhYDo9SL7MFduSnUuC9GFzRKXAxRhWWKozlVh1+FsuR5E4hZkt+TgINg9J3vdfDPCQkeOYJJyk0GDQRQYecJw5vz4OJ5nGX6epCzIxPFatxuTu66O6Kc/RXmgw4Frx2IwJMUiSAx7VzjMNFMFUD4vJElBQUFhPszVyZm1nphMNDfDjtXXI0zT1ATbunUrvB3BoHheDAbYupERHMMNFi0W2EGLBcQkkYC3hHusEeH57m7YcfZ6HzoE2751K+wwa76cOYPPwNpa84WG/H7xrNjt+GzLKQFXEZYlBO4syrokY2PzJ9rGYqIHEAiAsHAmutEIspBMYoIajRjgoRAmVCaDYznbPRDAsakUJiRXGnFui8cDwuNy4VpGI4yA243JuG0bJl1rK9G+fTAMRiP0X/R6ydzn8ujpGB/H5FdQUFBYCObysjidsKfshaipweaKE2c5D6+mBjbruefQX8hoxLkcEq+pEY0qJjMs4jYyArvIzRFZJTwSgS3z+0FKkknYzjNnEKJPJGCD6+ogamc2T908zgb2dnPuTnVuy3KAIixLCNWlvFxFM1eH4nhcyI3LRdTVheTXwUFMmN27ER7q7gYJOXcOE4h7bvDOgxN2WYWxXBZDwA0W9Xq8Bye6uVx4bsMGkJPGRpArbiPACbk1NeJdYTfsTFoyLFmtoKCgcDGYy8vC3mGuPFy5EvatoYHoV7/CpspiQUJsTw9sU0ODeFJqa0Ey/H7JUeHXuJIyk8EmkHuilcuw32fPYrPGCuJ798IGdnRIP7ZcTpRviUCC5gvzVCvgsk5MLne5/ptLG4qwLBFw75/qx7OJqhGBGHDZMpFknPf14XF9veSuvPACiMb4OHYSp07hWPaqJBKYBJOTeN/q3JVMBhOirk7cnPx+nZ34u68PSbUct/3Zz8S1umKFTKi5Kp3YtaqgoKBwMeDQ9UxeFlbf5jBKKAS7ajbD1tXUwO41NWHDdvo0dFu4IpK7RPv9EsbmjSSXJw8PywaOBea4n1o4jPPiceStDAyAbNx4I56LREBqurqQo8LXnatsmTs4c34O2/nlAEVYlgA0DZOGy34XIpoWiUjDrmBQVBYrFbD7NWswQYaH4YrkZNvGRkkEY/Kg02GyDAzIYyIRTbJYJD5rNktm/MaNICs2G4hQoYCJy7sZjhcTgZBUKjN/Lq4aUlBQULgUzOZlYVvGnmHWX3E4YJv+3/8TQct167CZK5WkkKBYhH09dQpkhwjPcSURV0PqdCAOsRg2XpkM7NrwMDwqw8Ow83v3IoTj82Fzp2kICbF6LquHc7PG2cDdnDl/xetdHqRFEZYlgOpclemdmWdCMoljTCaQhcFBeEltcFQAAGD/SURBVGeYmKxZA1KRTBI98wwmwOAgvB3nzmFyTExgkkciGOyahslmsUislmOyzc2YsOGwxFm3b8fxZ8/iuj4fJv6PfwxvTDAo7laW2efdx3QspBJKQUFBYS7M5WXR64XQtLXBFtntsJfhMM7r6AARiUSItmwRMsDKtU4niA53feawORHCOrW1IunP8hLd3djMcV+2s2dhi2Mx2FWuQLJYiI4fh91kgbjZwlyM6g7ONtv8AnTXAxRhWWRwyIW9HdGo5HzMhEoFZIMTzRwOTJZ4HH/7/ZhM6TR0V8bGxIPT2op4bD6P92NSEgyKd4XdmjwxnU6Rwa6rk91FWxuIhtmMic6TuFKBIUgmES8mwsTT6WYO+SjvioKCwuXAbF4Wk0kKE7i1iMMheXdc0tzcjMdDQ7DDmzeLGi1XXrI6LmtdEcEGDg1JU0ROuI3FYF8nJ3Fefz8e/+xnsPssCcGhIbdb8mi4r9tcWivV+TlEuMfh4cv+b11SUIRlEcEdPll3ZGJiamfm2c5ht2EwCFbudEqTwZYW/D02JjorQ0OYMFwVFI1iciSTYOYWC8JHLBDHmehEmMTd3diFcJLvrl2YGOPjuE5bG+7ll7/E41WrRM+AGzBWCy9VQ3lXFBQULhe42mY6uLcZeyTWrZO8wUQC9q1SkcrGTEY8LoUCNl8s/sYVRFyQwN7jc+dgBzMZ2D6jEfavqwvX4sqkTIboySelFLqpCccPDMDjw6q5rCMzV0fnapKm1+P9h4auXxVcRVgWAfm8ZIbzYq1pGJxzNTfkHhY8GcbHMUF7evD6+vWYIEYj0WOPTSUmbW1o9MUuSFZYDIexc9A08fJYrciD4Yz3yUmU+6XTYP9uNyaRTic5Kiye5PeDzGzYgOejUUzsmbRkJifn1phRUFBQuBhU65RUw+WSpoGaJtonnZ2wha+8Aru3aROOz2bh9dixQ8LltbXIN2lqgl3kzRjb3JEReMfZA2O1ws6zzfV6YQ/jcYSGBgZwbjgsLVX0evR7CwZxHoeo5kK1gJzJBJs8MXF9KuEqwnKVEY9jMNXXTxVPm6+5IU8ah0PIxMAAJkQoJI269HpUBcXjmDR9fdLMUNNECIlZO08ig0HEi4pF7DbYjRkOi6vxpptwrzxZN23CPR04gPfYtEmSazkpOJ2eWgHFmK8SSkFBQeFiMZuXxWAQe0cET3AqBZIxOio2mZvCFgqyqRwfRz8ibqjo9Yr0hE6HTVm5DG90MIjja2qkymj/fni/YzFJzv3BD6Tn0ebNsLs9PbLpY69QPj93R2cWkKvOXwkEpJccV5JeD1CE5SqhXMbg4SZb1ZguGDcTxsZEkyUQQCiorg4DOR6HgmI8jms9+yxIhdOJCVZfD7dkPo9reL2YMMEgyvjKZUm25Y7NrKmSyYCkjI5KiR7nzwSDON7tBgkLhXDd6twVn29mLRnlXVFQULgSmM3LUlMDe8gLeHs7iMWGDbB/R47Avm3dKrl60SgeFwqwwUwmGhokKZcLC7g3W10dbC17w7lCyOXCYy58GB9HPgu3CLBaYWOPH8f7Ohywk16v9HybDTN1cObrRaMgZtcDFGG5CkilMJjC4ZkX6fnKmLnPBCetcqXOyy9joLa0SALu449LUm5/v3RJ1usxcDn+WiyC+HCHZSJpqa7Xy64jGERWu16PuG88Lsm6mzdjUhw7hmts3Yr3WLEC16lUZKcxHcq7oqCgcKVgsVyYx8FNCqsJDTcp9Plgu8Jh2DS/X6ob7XYk6Pb3E91yi5CeQAAbOrabNhtsK/dyS6dxbqWCa506hY1gNivtS159FcdxGJ07PNfXS9UQtwQYHZ398/Jmc7qAnE6HjaROB+/6tS7jrwjLFQSHYHQ6sO7pybSahkE4X9LpyAgmFLsvT58WN2Qmg/yUoSHkqPT1YTJyWMftBqNPpyVBjPVSBgakfTpL+TMxqlQwed72Nrg529rwus0m8v5Wq7gjOd+FvUdMwljSuhrZ7Ozy/AoKCgpvFT7fzLokrJHCIaNt20AMuK3IsWOwTZs3SxPaeBy5LuUybKLfj00hlzazjeNiCCY+HKZxu2HnCwWc43bDphPhOo8/DrJRKiE51+uFXovDIW1S3G7Yzbk6Ovt8Qnimw+UCWRoZmVv6f6lDEZYrhMlJsOba2pml6Pn1QGDu0EgkIsmwfj/IR1MTQjxGI7wesRgmzPPP43hWVnS5QBpKJRzDCb2ZDCZULIZr6/VCKiwWnJdMgpQMDOB6TU2Si5JKoRzP6yU6eRKTcudOTPzt23GdUmmqV6ga3PhLQUFB4UphJi8L57dw52MOkXM/IA7jeDx4nquBTCZ4sk+eRMsTzoPhY6pFNnM52Di229x7iIstzGYpWx4dBYHYvx+2lsXkuGN0by/uhUur5/OS1NXhvJkSdQ0G2P18fv5E3qUKRViuAKJRcevNJEUfiWBQzfY6I5+X7PRyWUrijh3Dgu/zySD++c/FKzIxgde4gohzV6qF2xIJ0WPRNKkM8npxTCJBdNttmKCtrZKrks1i0NfWSht1jr96PNICgDuYTu8PlMko74qCgsKVx2xeFpsNNo/DJ9u2ER0+jM72mobQjdsNAc5oFNeZnERYSNOwmePn7HZsHLnAgDE4KDkzej3ek/u3hcPSGsDphAe7q0sqe9aswTlHj4Ik9fRI52e7Xbwzc31ur3f28mafD7Z6aGjukumlCEVYLiOKRQwCt1u0VarBDNvrXVjfnIEBeDm418+pU9L7h7sg9/fD65LJEL35JiaGwYBdhM2GiTE6Kp1LUylMpKEhaWpIhAnHnp5cDu83PAzCUVcHwuTxYLK0tsILE4ngfXbvRjhqyxb5nEyCpmNiQnlXFBQUrg7Y41ENlnpgeXuXCx4Uv19COMkk7B57qJ1O2FJOir3ppqldoLl5q9GI45gocOUOe1kMBpQtm0ySQ5jL4T1++UuE9AMBbGbtdhAp7htnMGDdSCbnD+tweXM6PXMCstmM1xOJa0vSXxGWy4REAj/19TMLpMViGDzTy5lnA6vDcgnd6CgIw6FDIEYrVmASnToluStGo7B2VsDN5aS0Tq+XTPNCQRR2eVKzhySVwq7j9GlMHu7kzIqNXO7M3hi3G+/t8Ui4Z6akWhZUUlBQULga4LyO6TAYsKHKZPB4xQp4Mm66SRZ5hwOVRCwNwSXPBgMIidcLu1oqwUZWN6IlkqrQYlGKInp7JbdvYkK8Pd3dOKerS6QkjEYQE6dTOkYnEpIAvBDU1Eh580zelNpa2P/h4WtD1l8RlrcI7tZpMs2so8JeF6dz/oaGjFIJ12xsFAnoSASDVdOkE3N3N9Frr00NBQWDmGzc/fjMGRCIUkm8HoODos5IJJ1J2TPi94N4WK34TBzTHRgAWTGZMCnjcbhRz5xBUi4RJhgLIE0H72YUFBQUrhas1gu9LKwQa7fDZrW2YpPV0CDFAyMjYmv1elzH6cTjkyeRx8eJtX6/VG+y9EMuJ12VWRWXFcknJ0FyrFbpH9fbCzt/8CCOX7sWxx07Bjs8OIj7yuVgk+cLDVV//vp6eFJmIm92O7xJY2PSAXqpQhGWt4B0Gl9yKDSz54AHCDcBXCjOnUPyFWulnD2L9+B6+tZWEKHnnsMkGR3FvZhMUtJss4FIGI2iujg+jucLBUxKDgGx6ByrNq5cCQbv8UgyWrGIe2hokLCX3Y6Jn0ggu52z6mcq01beFQUFhcUAJ9hWQ6+X8A9rlNTVwZbu2DG1qWB7OzaHPh/sGttELnk2GkEsXK6pXgq9HuuDyQS7ms9jLejpwXqQzYqNTyTwOJVCaP/YMbxPczOu1d8vTW+JQGBisQuJ2Fxg3azh4Qs1XbiSlROBl2r5syIsl4jRUXzpdXUXehNYJM5imVu9diZU66K4XBjIBoP0Bdq8Gc+/8AIG7MSEeFfq6nBMpYLfkQjUHCsV6e48NoZBy+SECCSD9QRsNjzP8v1+P376+kSjwGbDdW66SZR2iaQX0kylzMq7oqCgsFhgOYZqMJHhaqL16+HlCIdh+2pq4MUIhWADmXjU1OD1vj4J8bP4psEgfYCMRtg9qxW/LRb8ttuxmeQNXDQKchKNgoBks9iMTkzAy55M4nmfD5vZQAC2v60N17kYsDdlNjE5txufb3j44sjQ1YIiLBeJXA6LNDPt6UilpA7/YqthKhUw6ZYWkX0eGsLzDgdYr9uNvJVTp0R+f2QETLyvT5oX9vdjQPf1gaBks5hYuZyU35XLQl4qFUysQABEx2LBZOSeGYEASpsHBnAPwSB+Dw+jtJpL+2bKXZmvR5KCgoLClUR1vx2G1Qr7ydVEnAg7MgJ5htFR2HCPB/buxAlJiDUaYTc5YZfzALnQQKeTHkPptNjRSgWhHk52ZdtcU4O1g8M8iQTRr34Fu795M449dkyqjfx+vJ/LtfDQEIPF5PR6nDs9d8VoxGdkD9BSgiIsF4F4HJ4IHrDVqFTw5ev1oix4sejpAcmIRkVh1ucD+RgYQBWOToe8lcFBDOaxMbx3Po8BxqJE3BeIVWlLJewwOHeFf1j+mV2bHBrS68HEQyGEpLxeqRiKxXAvfX2YOBYLJpjHM3XSMhRhUVBQWGzM5GVhosHtRtrbsQljT4PXC/vX1CSJt4UCHrN0P3tjWD7Cbp/aboU1WVixtqcHQnT9/ZIP2NeH9x4aAjnJZHDtV14RUsTquZEI3qdUwsY4Erm08mSnE+vMbLkrfr8Ub5RKl/Ifv/xQhGUBKJXwpXHOxnRwLksweOkLcyIhVUF2u7QV7+/HNVlZ9qmn8F4+HwZ5by9yTkZGMLCzWby+Zo3EbVl/JZPBQOeW6Xyv+TxCV2YzJpdej2tyuZ3TCXfpwAAmXnMzjhkfR3Z9oSClfNNzdRRZUVBQWAqYycvi9eI5TsINBGBH+/rg2YhG4fF2u0Uos7YWz3EbE78fdtLlkkRb9l5zNWalgr8zGakcslgkpM5hHyJsjK1WeNEHB2GTOzthfyMRfI7BQdzH2Bhs9alTl/Y/4Y3pbLkrnLAbj1/4v1sMKMKyACSTkr9RDZbWr1RmzmVZKDQNscn2dskDGR2VMuSREcQy9+8HYRgexj3F45hELETn8UiuSSqFiZFISIUQx1dZLM7rFTXaXE5KmMtlvF9dHQhRbS2O27AB97dqFSYMJ+XG41JyN73NgCIsCgoKSwVcFVQNFtVke9vcLJu7hgbYy/5+bNrMZmz+cjlJiGUBTq7qJALBqZaOSKdl48gJuOxNj8VAWoaGsAacPg0bX1eHdeGXvwS54QrNs2fxHuPjorTrcs3da2g+uN2w/8PDM2u8cDn3Yue1KMKyANTUXBjiyWZBJAKBty6Edvo0BmokgoExOgpy1NuLgd3eDjIwPAwhIW5fzuz83DlU6QwMgDzV1sL1yZoszOzZu8IJXPk8XuOJwB6V1aulQaJOR7RxIwhQMgmPSiaDSdfWhuNnUnokUom2CgoKSwvVVUGMau9KNCraJcPD2JwlErCBmQzsbU8Pjl21SiouedPncok4J9tG3iSyjeS8kHwem8v+fhASbqESCMC2x2JYE3w+5LNwngtXbcbj0k6goQHr0VwdneeDwQBvymzS/U7nzGKgVxOKsFwCWOE1HJ5bWn+h19LpMLC51G1yUjQCuKb/pZek2iceRwIYM3BOGmP3IId1ONmrVJLdA2sBsLQ+S0xzomwuB4LEE3PFCnhTduzAJKmvB3ExmTA5uYRZlTIrKChcC5juZWHbWK363dgo1Zbt7Tg+kwFxYQJSKolcP1ddtrZiwS8WYVPzeVEUz+WwiWOF20wGuTBEsLEdHaj6YQmLZBIelNdfx/lnzyIUNTGB481mSUXgNIA33njrAnDzSfsvJhRhuQhwhZDXO3+H5flQqaBXRCYDksFJq/E4JkAmg4Hp96OEubUVpc0mEwYrEQgDJ+iOjeF8mw2Ta3AQkyESEdZtMICc+HyYiKUS3JrVYaK2Nky2QgETrb4e7zM4iPuMx/F8e7sQIe5YWk3elHdFQUFhKWImLwvnt7CXxe+HPctmsTHM54l27YL97+zEhtHtRoXk5KRUcJZKuNb4ODa0TGbYu8LhoEIBr42MINQUjcJWt7RA+r++HusDe72TSeSpsCCo3S4doLnNQD4Pr88bb4iOzKWiWtp/KVUKKcKyQMRiGLwLldafC8PDIB+rVoGIMEvmvBXWeGlqwnF2OwYxEYjAmTNg9m+8gQnDWd6bN+Pak5OYPENDQkSIpMwuHJb4Zz4vlUGZDFi6zwfxoi1bcO1Nm/CZORdFp8Pf0Sgm+Ezdl5V3RUFBYanCbhdZfiKpIOKeP8UiyINOB0LQ2opNm98v0vpc4RMK4bHZjGs0NcGucudn9rIwYRkagv0eGJD8Qlaa5TJnnQ7hlxMncK9Hj8IDs38/3jebFcn/ZFI2qjYb1oF0Gue8VW9LTQ1s/VJplKgIywIwNiaSzG8FpRJyUCoVkACzWZRpmXWzUBwnV8ViGLg9PSAFb7yBCdLfLz17hoeREDs0JN1EbTZcmycET0KvF5OqVAL54h4XHO4hwuuc6b5qlSQEp1LSx4gnh06H41k1lwjHKe+KgoLCUoXbDftYDRaQYy+LxyObPJZ92LwZXuYtW2DL3W7oqqTTeJ3bknBz2MZGISr8m/MTWcAtEoFN5VSAzk5ortTXgySNjeGaBw/CDj//PMhLsSgpBbzpHR6GvW9tFW/LW0nG5f8LN0pUSbfXAILBi5PWnwkDAxiE69YhQYp1WzRNGnQVi1js02mQkq4uTIaDB4WscDlcPC59g9xuKaEbGMDgGh6WZFiDAecZjbgul8bp9aIVkE7Du1JTgyTg9etxbmsrrl+pgMTodFMF4rikuRrZrPKuKCgoLG04HFO9LGyHWVoim0WInL0lzc3YRG7cCHvKeit2Ozaz3AiWw0iFAo5zOrFB5FzFfB7vyx6SfB6bzRtvxJqQSOD8Eyfg5Tl6FNc4exbXZqVzhwMb23gcRCidxnkjI7i+2QyCVSxi7XgrCblEyHtUSbfXOfJ5MHGTCQOd5ZpHR0UtNhIBceH8kMZGoh/+EF6T48cRvkmlQEba2xGuaWuTXkWsnDg6ioHNA5jFizjHhCdhsYj35mqhchkTzmbDNTkpbNcu7ASCQZyfSmEnUK1mOz6OazBmCg8pKCgoLDW4XBd6WdhWck4L9wdyOPDb5cKGkwgbvJMnYf86OmB32evsdmNjGYmARBBNFV8zGOAVYWXdUgmEo6EB17Hb8RwrlL/+OgjTq69KOMlkwjmcEJxO473DYZzLG+LGRqwRb74p+Y/XKhRhuYI4dw7eig0bJM7JMsrhMDwcqRQIQzyO18tlMGqvF2z20CEce+QInuvuxmSanARZ2LBBegllsyBEvEtgfQFm96GQNEDknj92u5Qre70gKPX1YNNGI57j5ogs+5/N4rxi8ULtGX5NQUFBYanD4Ziq8lpTIwmrHg9sKYfDTSa8PjhItHs3bKnfL5U/bFNdLhCIcBibRqKpXpbqvMKxMVEn58rTyUmc39CAfMX6emmKqNNhLdi0ieinP5V1JZHAb04L8Hhgw0dGJFy1cSPe+/DhpVf9s1AownIFkMlgULhcCK0wMeE4o8sFYjI8jNcmJ/HDyVYDAyAQzzyDypxf/QrPOxyYJE4nyAK75woFXMvvl54YlcpUsTiXC48LBTD+bBY7g2IRr7FXhX/ffDNIlNMpnpdVq0QngGjq30Qz9xFSUFBQWKpwuaYSFm5LwiEfbluiaZKn5/GIkFtNDTamfj/CN7EYNnmcL8ghG26CW00UdDrY40oF3u5kEu+3di08M1zRefIkrtXXB5vPxCUYJDpwANfS60WzZXQUJMpgAAHijTILnK5fj410b++V//9ebijCchlRqYARDwxgUHA2ORMTVsNNJMDi6+pAbjgUVCqJKNHAAF47dEhIxalTImIXjyO/hCWVOa9F00R7hTPOicDimcy43aITMD6O69TWgp1brWDvLILEzRF5Z8DZ8dVJt4zpybcKCgoKSx1O51TSwt2Q+e9oFF6W8XHJF4zH0a0+nZYE3vp62E/2SOfzsNe5HJ5jrzSTIi6G4DD60BCOZSG6QkGEPjlZ9+mnibZtI/rJTxCGymZxL9zKZXgY5Eanw9/lsjSrrSYy69fjfo4cmbmP0FKFIiyXCYkEmK/PB6VYgwGMeWwMxIS9IkNDIBc+HxhuOi1icKkUBml7O9HevchTOXkSAy4eF6VaJiu5HH44nMRlZ5omTb14p8CS+7W1UhnExwWDmJQc/unsxLlmM947kYCnJxKRncJ0b4ryrigoKFyLmE5YiKRMmJvFWiwSxnE6Jcdk61bY5IEB5IrU14PsBIPYwAUCIhrndmNd4GaIlYpoWXH+C+eYcBjIbsfP0BCe93hAVrjUmas5YzHx1AwOiic9GoX91uvhbSESb0ttLWz94CASet9qCfTVgCIsbxHFIrwisRhceZzEylU6dXUix5xIYCAWCnAjVjPo0VFpb/5f/4WyucceQ01/Og12b7GIUJvFAtJx+jQGejo9tVcQN9syGDBR8nk85/djInG1UEMDyAhrAtx8s8RdAwHZEWia9NGYiZwo74qCgsK1iukJuNWNEmtrpfQ4mRTiUSggTG6xSMf6+nrxRttssKncBsViAdEol0XzhWhq89iJCfzkctiURiJScZlMwg4PD+P+urpEkt/lgtQFk45oFI+5qe3wsHjqWWiUJTVWr8ZnOn5cGuYuVSjC8hYQiYAw1NTAPcdeFQ73OByijut0ggD09+Ox0SihlRMnkHHOyoWZDEqZLRYMrGQS7kC3G9duasIg7O7GfWQyEm+tJiuFAu7NZMJrNTUYtCz3r9Mh85zbnAeDUhHEJXOckMsNDjXtwsTamZoeKigoKFwrmF7iTCSkRacT6QbOAwyF8FuvRzUlb0I3b5YuyuzN5m7OrIbLAnNcNaRpoi5uNMLbwdVJLFJaXRG0ciXRD35AdMMNRD/+MdaDXA6EJ5nEddjDfvIkzg+HYadjMUlPIAKRqVSwNnCO4tmzsmldargkwvLQQw9RW1sbWa1W2rZtG73wwgtzHv/cc8/Rtm3byGq1Unt7Oz388MNTXv/mN79Ju3fvJp/PRz6fj97xjnfQa6+9dim3dlWQzSJXJZPBl+z1TvWqhEI4bmxM1HGJoMMyOSlEJpkkeuUVMNyeHgyqZ54BQejqEoLAokOpFCZBqYQBFYtJg610WnpiMIP3+TBwjUaZLJUK3mdoCORk82b8XalAB8BkwudqacEEYA8QC8FNT7QlwuuLXZ+voKCg8FYw3cvCm0BNk4IG9rKYzaJD5fdjw8oqth0dsJ0ej9hvruy02cSuM4nhFgAulzRTPHoUpCIUgs11u3E/qRQIRX091gqTCRvOWAxr0ZkzSM5Np3GPZjOeGx3F2sGqtWzTQyGsU1wF1dGBez1zZuYGiIuNiyYsjz32GH3yk5+kz33uc9TV1UW7d++me+65h/r6+mY8/uzZs3TvvffS7t27qauriz772c/SJz7xCXr88cfPH7N37176rd/6LXr22Wdp37591NzcTHv27KHBJVY0zgmug4MgA62tUkYci4lXJZOBm87vx8/YGJguNzMcHYVX5dgxone8Q8rd9u2Dx+OHP0R4qbcXk0Ovl5I5zk4/dgwDmyWhuVeFpmFimM0gEX4/7qd68rCLctMmJPJOTiKRiydMIIDfrLuSTkustJr1EynvioKCwvWBmbwsnHRLJPaRq3taWkTVe9Mm2NfeXmz8ampADGpqsEZwZSh71jkZl7s5m82ial4uw+6PjOD5mhrYYE0TMdByGZtcux2VQi4XSMbu3bDVr74K4lIsSg7ksWPSIyibxbqk00kxCCfp+v3S8PHcuQv/J4sJnaZxKtHCsGPHDtq6dSt94xvfOP9cZ2cnvfe976UvfvGLFxz/6U9/mp588kk6zs1wiOiBBx6gw4cP0759+2Z8j3K5TD6fj77+9a/Thz70oQXdVyqVIo/HQ8lkktxXQLkslcKXzh4UkwkDjVVj7XYMpLExsGgmCMePi3djfByDKBpFjkptLQbm0aO4dlcXrnn2LEhEoYDH7N5zuSQRt7cX1+VW5BaLuBTTaQxyrtHv78djZunM+H/3d1EybTAQvec9IGDDw5hw8Tjek/UFzGZMoFBoamXQyIi4FxUUFBSuZWSzsLnVS8jYGOynwQD7yGrggcDUYokTJ+D12LIFG7mf/hQe7IMHYTPHx3G9VauwUcxm8ePx4D1Zw4U96HY70W23Yb0YGpJEYO5LxJvau+/GOsJEqaMD68Arr+A4nw/rRqWC49rb5T0jEXxWLsIYHZX1iwgkKpnEvQSDF+puXS4sdP2+qLcvFAp04MAB2rNnz5Tn9+zZQy+//PKM5+zbt++C4++66y7av38/FWfpppTNZqlYLJL/rTbvuUwYGxMJ/MZGkJXxcTxXVyeuOtZZ8Xjw+OBBMGarFU2rTpwAsbjzTpwzNoafchmv19ZKEm11+3Muf6utBYng5Cru1swJWyyC5HTiPVnAyOHANTMZUWS8+WbkwMTjYOXcKbq1FddIpaRzM1+fk24ZkQgmiIKCgsL1AFYDr97Gc9ItEewdlwYXi1gPWBK/sRFrRHc3qodqa+Gh4Eofmw3XzWRwrMWCtYQLIjhn0OOBnU2npXecz4f3dThAZkwmrBUuFza8k5MonODS5kQCBKa9Hdc8eBBkpKYGJKe7WxrhVqvi1tXhefa21NTgXkslXP+a6iUUjUapXC5TiJM0/huhUIhGWMJ1GkZGRmY8vlQqUXSWHtif+cxnqKGhgd7xjnfMei/5fJ5SqdSUnyuJhga4yrg02WqVBNXpOis9PfCShEIgKfv3I2yyZg0GUCIhLjmbDYPS4YDmis+HQc4t0Dnxq7kZ1z94UEqOuZS5VMJ1WNLZZMIgSyZlUnDM9eRJEJHWVgz45mYMek4QCwYxIazWqYJHnHTLYK75VjtXKygoKCwlVBMUIkm65U1bsQgbmkzKJnB4GDb87W+HrTx1CpvCSAQKs1w4YTZLzp/HA/uZy8Fuc84gbwR1Oqw1kQi8OVw8waGpfH6qV6SrC/c7OYn3Y/u/cSPOTySIXnpJqj4PHMB7ezxTK4ccjqkl0WYz1pOloGB+SQ4eXfU2m4g0TbvgufmOn+l5IqIvf/nL9L3vfY+eeOIJss6RyfnFL36RPB7P+Z+mpqaL+QgXhWBQFAu5dI3VX7kiiIWCDh4EgUgmiX75Swy8lhZcg8uOx8fBVll6eWBAQkBDQ5gwg4MgFRxy8fmgnhuN4l6qM9iJpEJIr5fSaXYvOp0YiOvX4zPccQeIVDpNdMstuH5fH1yV7F1pbJTrTUxc2H05FhMyo6CgoHC9wGCQsmWG3w/bSQRbnkjADnPOHxFsptWK3ydPQuMkHBavud0uJdCpFF5jb3g8Lva6XBYxuUJB2rK0tcEWswfe78fmlkVF/X6EpNxu2O2zZ/E7n4etDgSwaX7zTVzT7YZ3pq9PNtwsOFepYMPNJdGlEs5f7OKKiyIsgUCADAbDBd6UsbGxC7wojLq6uhmPNxqNVDMtnvCVr3yF/vf//t/0i1/8gjZu3DjnvfzFX/wFJZPJ8z/9/f0X81EuCuxVsdvFE8FeFs7pGBjAICgWwVzzeSghlkoi3GYyYYCYzRh8P/whum7W1iLMw508JyYwQGMxHMuhoO5uDCyfTyZPpYIBnM/jPjhXhQiEhuWhnU4M1PZ2DLxTpzB4NQ2M2uUSvRa7HROSJyKHmRjptOrGrKCgcP2ipkbUbhlcRcRd7hsb8TidRqkxe9VvuQWelzfeQH7JyAhyWVgpN5+HXZ6YEK+82Qyby96PbFa0XBIJotdegz1euRIkZe1aePLb2/E4n8emVa8neuQRnLN6NWx+PA6SxP2MOjrw2ssvw3uTSuFeeXNb7V2x2/E4HpccnMXERREWs9lM27Zto6effnrK808//TTt2rVrxnN27tx5wfG/+MUvaPv27WSqiif8/d//PX3hC1+gn/3sZ7R9+/Z578VisZDb7Z7yc6WQTovscrUAnM0GgnL0KAbrwAA8IzffDLY7MgKy4XaDkBw/joEbiRD93d9hQG7ciIGg10ujq7ExTIZoFF6PQABhpXxehN+4JwV7eliVNhCQJogGg7RMX7kSv++9F14gTUOctb0d5KulBZ9zYgL3zO6/6aEgopk9LgoKCgrXEzgsz6hWxA0EpLy5UMCxLpeohXd0CIFpbMRmk8P1gQDWAO7TxrIXlYoIgxLBzno8oqTb14fHfj+8NitWgKywTMbAAK65aRPRE08Q/ed/Yn3R6RAu0uvFKz42hgpVhwOe+5ERrAtcORQKgeQMDYHIBINY/66pHBYiogcffJD+7d/+jR599FE6fvw4fepTn6K+vj564IEHiAiej+rKngceeIB6e3vpwQcfpOPHj9Ojjz5KjzzyCP35n//5+WO+/OUv01/+5V/So48+Sq2trTQyMkIjIyOUXiJNDny+qQJw/KVHIogJnjqFv5ubISJ05AgGx4oVIA8HD+K8FSuIHn0UnpWbbsIgKJdBZoaHMciPHEGy1BtvICTkdoNdR6MYXDod2Lum4T04a5wIE6NSwaRhsjMxgWsMDoKUcLXPypW4hqYhNGW3Y+Jx4i5rtrAIEYPjqQoKCgrXM7jMuToBtzo05HDAhrM6bXMz1oj2dshElEogCu9+N+xmW5vI9nMuDAvL+Xyw56yfQoSNaS4Hb0+hgI2xwwG7zt4UFgKNx7GWRCJYD264Aff+v/4XXtu8GRvmM2fwfq2tWGOcTqK3vQ2fsa8PlUUnT0peZH29yHbYbNdYSIiI6L777qOvfvWr9PnPf542b95Mzz//PD311FPU0tJCRETDw8NTNFna2troqaeeor1799LmzZvpC1/4An3ta1+j97///eePeeihh6hQKNBv/MZvUDgcPv/zla985TJ8xLeOSEQE4CwWDJI33kCOSiIBNrp7N7weBw4Qbd+OQXf6NIjIhg0YBF/+MkjAbbdh4A0N4fhiEYOhpweqhefOSaJTJCL9JaxWaXKl08mANRpxnsmE60YiUmufz4uL793vhqfGYkE4aNUq7BICAQxuTvJlXZVoFJOLwcqMKtFWQUFhOWB6Ai7LR1Qq2NRls7DLxSIW/4YGHGcwYFM4MgJ7GQ6LrH9fH7zb4+MiOlpfLwrk2ax4WpJJvJfHA1K0bx/WihUr4LXZtEmE5KJRrDenT4PQbNyI9/nP/yT6znewRjgcyF8cHQWJ0TRc84YbcE27HSTrmWckBFQtOFfdbXoxcNE6LEsVV1KHhcuKiTAAX3wRi3dLCwZSIAA9k3Xr8MVyXx6rFQPnqack6bWxEQI+LOFvs4G06HR4zNU7N96IyfHii3i+ukszN0HMZPC33w92bzRKlvmNN8LVx5VNJhPRXXeBsHR0YLAGgxjogYAMTosFBKdYFDLDGB6WxCwFBQWF5YBoVCp6iEAgIhFsVHM52PbRUdhKnQ6EwOXCpnbvXpCEjg6ib30L9j2TwTUCAZCOUAjPTU7C9nPeIwt1WixYSzIZEKHVq7H2vPEG7icUAmlpbRWviMkEMrRiBZ57/XWsHbfeKmkIViuu3dqKXMpwGH/39WEjPjqK9+IGj0RT18LLiSuiw7JcodNhMD39NMSA6uqQAd7aii/1lVcQD4zFpGsmEUI5//EfGLB79oBc7NuHwTIyIiEdhwOP29sxWFpaMEAOHsTAcTrxOJUS0aBCQbqIhsMYyE4nSMXb3w5iUlMDUhKJEN1zD1yCbjeu39KCc1wu3EMqhQHMBGW6BD8n3iqyoqCgsJxQrXZLJEm3xaIo09rteGy3Y1PK6uINDbDh5TKuYzSCQHDDQ9Zh4ZLn+npZF5gccLUSV6IODMAed3aCMHGZdDSK36US1quxMZCno0eRqrB5M9aF734X57Bq77FjICYuF9Hzz2PzW1+PyEB/P5rx9vTgHhbb/ivCsgC8/jrR//2/0m/H5wPJeOklDMhAAF9oMAgC09+PPJXBQYR/OjpAakZHQQQiESlz47KxhgYRgQsGcT0uW7ZYMAFYDZGbZRkMomrodIL0tLWB6NTUiMgQxyFZuTYUAkFpaJiqosuem2z2ws7LKtFWQUFhuWJ6Am4gIFVEgQBsOeuyuFyw4w0N2Ey6XLDnd96JtaGhQUqKb755qrfD7ZY2LGzrWUTOYIBNTyRwLlf8jI5iE53JgNC4XCBCnB9JhI1ysUi0YwfWg5/8BOtaX590lx4ZIdq5E8+Pj2OdW70ax+/fj836YndzVoRlAcjnEY9saMCCHo0iz2TlSsT1Wlslvrh/P77wLVuQJ3L6NAaX0wkPB/f4sVgkWYt7/ExOYoCkUhiEmQyOZ4LC7JZ7D7H0jNMpZXCsxMgtBIaHkV/D/Y+CQcQkuZ1ANovjzWbxqLDaIiMaVYm2CgoKyxcOx4UKuHY7bLTRiM0ee05sNtjZdBqebJbCyGZBYFiOPxSCF37VKpAFpxPrQlsbfrNUBZOXVArPswemuxt2mxXP6+txnXgc53Evue5u3Esmg82sw0F0++2w8y++iNDSG2/gfbl6yeuFkCmTpM2b5Z4WE4qwLABcfVMug6hYLBi4POh+8hMQld5efMG33ALCcfgwBm8qhUqi2loMJJsNA2hkBISnvh4DIRgEs+VeQjqdlNKVyyAqLD7n9WIgsR5KPg+CdPgwJkUgAJKyfj1YsV6Pgb1yJa5dWyu6L1xep9Nd2MyQO4qqRFsFBYXljOmhoWqvS20tCEIqBWLgdIIshEKwu04nPDI33ohjuMS5WIR95XWCmyS2tcE+c4Ivrz/lsnjFk0mEfVaswPPZLN6vu3tqdRPb9qNHcU9DQ/D4c+FFfz821j/6kfS5i8VEmmNiAmtGKLT4+luKsCwAHIPk3yYTytYOHCD693+XL7S+Hl6YZ5/FQPT5REzOZsMPu96OH4cb75ZbpEzO58NrhQLOcTik3Tk3NszlMGA5sYolnS0WuPe4VJo7PLe2ivSzz4cfv19apzNr9/kwwHO5qeEgVcasoKCgAPur00lbEiJs7hIJPO9wiIQ/29RMRooxDAbY840b8XxNjaQT8KaYvS8GAwgCh4Q4PMTheva6j42BcIRCOKdSQZlyby+uy+1WOL/mxAkRBX3tNdj3zZuFFB04gORgbiVTKGBNSKUkX2YxoQjLAtHfDyJw223weHz1q/C2hMP4Mtvb4R05eBBkIh6XZodWK46bmICnZWwMgyqfB3GxWhHeYWZc3QyrUhE3HOettLWJhyefF0E57jTKpchr1+KeuBfGhg1S18+SzRaLhH+mh35Y0XaxE60UFBQUlgKme1lsNthUTROv98SEFFP4/TiHe7qZTKIqzgSorg6JtGazeEMsFpzrdEqVJxdacAEEe96rG+BaLPCk7NgBO3/sGMgLJwCbTPCesMc/nUYKAwvFFQo49j//k+hnP8OaUV+Pc8bHF9/TrgjLAhCJIDkqFCJ66CGi555D/Xskgi+Y+0UMDYEsnDsHguN0glyYzSAj3d0YRGvW4O/GRpH2HxuTMuVUCtdJpaTBlV6Pwen3i95KuYzXfD6EoJxOsGi/X6SfWaHX6ZzqXeFyPKdz6rW4fI1IROcUFBQUFACW6GdUkxivV0I5RqMok2/bJg1ry2VsULnvWzKJY1nwk1upGAwi9pnL4TGTI65UmpwEoTl9GtdMJEAyuAp161asLadOYY1oaZEUhEOHZDN77BiuGwhAXK61FWTmn/4J69kdd4iq+mJCEZYFYMMG5Kn88IfIAbHZ4E5rasLif/QoBoDPh+fTabgBGxpATPr7QW4aGzEw7XYMnN5eDCaHA781DUzW45HYaKmEgcd9HhobJaGK2bxeL7LJGzZg0FqtuNdoVKqbJidBmDQN92swTFXtrW5mqBJtFRQUFC6E0zk1R8RolMIJ7suWSsHe8gYyHJYy5tpa0Vfx+fBaPg8ywASGCYnJBA+MwSB5jJOTeP+GBrwPE6T+fmx0jxzBfbS3Yy3o6MD9jYzA669p8L6HQki2HR/HPR4+DM9QRwfs/5kziCgcO0b0j/+I+7+CPYYXBEVYFoD/7//DwOvshEBcpSKJSa++ChKQTOLvjg4MhkQC6raFAgZEWxuISGenuORqanB8X58kX5XLGPCVCgYliwcZjaiP56QrpxOEh4WIYjFRT3Q4cCx7SOx2DM6aGvGuJJPireG8mOoqJA5JKSgoKChMxfTQULUiLofki0UQD67cvOEGPMfVQ243QkE33SR5KuWyaG15PFg/QiHRwOLNa7kMAhIOoxLUaMR7xONYY6JRbKTr63F+OIxj4nHxuIRC2MhGo0jCXbECBR/79+P+Vq0i+vnPQWJuuw3K7gcPXv3/dTUUYVkAbrlFypV37sSA/OUvMUDXrMGXHY/jS/V44FVJJsF+s1mQm+ZmEIlXXwVDbmnBwOGmhlYrXHbt7SAf+bzELnU6vCfHM30+DNLGRhCjVErK55JJvBcTkMlJiAYxiy6VxLvCE4tr7hnTvS0KCgoKCoLpCbicd5LLwWbX1Ij2ld2OcM/KlVP7BK1dC5v8xhtE73wn7H4uB7sci+FYj0fWC4MB71upyPtWKnjvXA7PTUxAWp9FQ48cASlauRJEpqUFG2QiUVxnWf6nn5YGic88g+Pe9jbc/2OP4fm1a6/2f3oqFGFZAB5/HF/27t0gHC++CI9JsYhQ0fr1IAWjo2jnrWlCKG68Eez2xAm8Fgrhmm++KeVvmgbywrkonC3OHg6rFZ6URALuQc494QQsTSP6tV/DQG1rw/uxQqLJhHNZSC6fl+vo9RcKwmUyKtFWQUFBYT5M97L4fCKsxhU+7DmvrYVH5G1vE7KRSKDvXKWC69x0E9aBiQnYcG4JwF71piYcyy1fSiVsVjs6sGE2m/G81So5lXV1WEv27sVa0NYGef6xMVx3cBBrUSCANaS3F2vc6tUgQT/4AdaHO+6A9+WVV67yP3kaFGFZAO66C1/w976HgbdyJRjo4CDR7/4uBupLL2FAGo0gETt3iubJL38pg663F+yZ6+1jMWli6HCIu49IvCurVwtJYTlokwkDMZEg+uhHcT/BILw5xSK8JJOTRB//OO4zEABZKZWmisRxxjkjlVKJtgoKCgoLwfQEXH6s1yPHhL0m7GVpa5MUAt5AbtqExNa1a6VMmnMiEwm5Tn09nmOZjIkJeF36+/Ha8LBsQn0+vO+5c1gnampQstzdDfv+jneIcKjBIDpi73oX8i+ffBLX2bULrz3zDO6zs3Mx/ssCRVgWgCeewGC45x7EBX/8Y/Tred/70DTqwAEwYRYAuvlmDIYjR5CJbTaDASeTGBxuN8IwhYIk3DY2glHrdCIgVCjAO2IwiOSyzQZCk8/jmjfdhNJovR73NDQEL0mhgMEXiUg4qVDAezU343PFYhjIDJVoq6CgoLBwcHkxJ+A6HHhMBFvKQp+lErwdPT1Ev/d7sNcDA1KA0dSETe+HPgQSwTY8EMDG0+OBfeZWLCYTrpFOY83I57HO8HvH43hvrxfnDw7i+GQS75NIoHJpzRoQG48Ha9JPf4r16U/+BETo3/8dRGrlSqyDp04txn9ZoAjLArBzJ1juQw+B3f7lXyJ081//Ba8JC8I1NUEUaGQErrNoFIMhncZ5tbUYWJGIyDofP47Bwi69WExE3VhGPxaTcjnOCM9kcBxXAm3ZgsFYUwNS0tmJwT08jGuwC9Fmk6Re9rYQqURbBQUFhUtBbe3U0FBNjfQZam3FepDPg8yEw8hZ+fjHQSCGhvD6O96B1194ARvjdFrWCk66ZeLD4RqPB785L5Grk7ikOZeD/a8WCmXvTVcXqoJ8PqwVrGAbCiG35Qc/IPqN38Cm9/vfR/7mXXfh/hcTirAsAM88AxfZ7/0eEpQeeUTE2splfImhEAbQwYMgIdGolL75fBjE3d2iddLdjQHV2oprGAwYbCaTdPTkWnjuF8Fuv2IR788en2AQxMVgwHXr64ne8x7cy5o10gRxaAjJVUQXJtaqRFsFBQWFiwdrV3FuitksG0C3e6pX3OvF37kcmiFywcXZs+jvw2F7Ln1mhXWPB2vI+Diu19IilZ4cksrlsLF2OHC9RALv39sLrw3nLfI1e3sR7kkkEKoKBiXdoKkJ+ZmnThF9+tO4l0cekUqoxYIiLAtAOEz0kY8gcenoUVTycN+Gujqw32RS4oCRCDwvdjteHxqCS87vh/djcFDOY2n8bBYDnkM3TGSSSbwPM1+DAfe0erXELO+9Fxnd8TgG3Ac/iESqtja4C/naXi9eZ8Vc/X9/+yrRVkFBQeHSMd3LUl3mvGIFwj+sItvcjNyS1avhBY/FYI/tdum+vHWrVHMODUlbFZtNPOk1NSApZjOeI8J6otdjfTGZQDg4X/L4cdGFsVpBjHp7sVYcPYrX7HasG9ksyI7fj7DQihVE73+/IizXBAoFouefR126wYAvc+1aEWs7eRJf+MCANCbk/g3coVmvB6ngVuTxOLwtdXXi/uOOoK2tGJixGAY+N0XkyiGTCYM+kUDl0pkzon54xx041miU7s3FIkjSqlX4PLHY1FwVlWiroKCg8NZQnYCr18MGc4Ks2421IZ2Wys2eHpQzc1j+3DnkPzIpWbFCZCxeew3ek/p6PFcsihApK+gmk3gfiwXhn2wWnpJoFOtNXR3IUG8v1gWvFz+jo1hDDh7EmqJpWF/CYbzW1obPtX8/rrGYUIRlAairA2k4exZfXkcHvsCzZ0FUuPKnpgbHshR/Og1iEIthYLHYG/cOCgZBcjIZ6dzp98vAt1oxSD0evE8oBKa8Zg0GUnMzBtz4OK5dWysZ5cEgjh8bk9p+g0FyXxjR6NTEWwUFBQWFiwcn4DKqc1nWrMGGtVyG/TUaQS7Gxoje+15pSHjkCDadExOw7yxfYTZj8xsOY41JpWDPGxtls1upgHgYDCA23G05l8M5w8M4xuFA2XMqhfdsbMQxY2NYZ44dw3kuF3IyOQ+TE34XE4qwLADnzom6rdMJj8qRI/gdjYLNrlyJgcDhH58PAymXA8k5cwaMd/VqiTvu3w9WzKEYsxkDixsehsMYTM88I4q2NTWS53LzzUjg4r5Gd9whTLo63DQygvsjmupNYRVdZvgKCgoKCpeOQGBq2ISLK4xGKX7gRFqHQ3RTNmwQuf5EAqXFIyMgOpoGu3/uHP6urweZmJyEN6auTsJH3Bfo1CmsAe3teN8TJ6QDdDyO83M5bKzzeeTEcPHH8DCIS1cX7mXVKqxhZ8+qXkLXBLZskZyRF14AWRkbEw9KWxse9/ZKM6lEAuekUih7Xr8e5COdBrvt7sYAsVrhPqxU4AVhddpwGIPt0CEMykIBg7+pCde8+Wa48HbsAGm5916R8LfbcU3uH9HUhOsqRVsFBQWFKweusuQEXLdb+sKtWoU1xOGAhzwYxOY1HscaMzmJtSSREM2VQgFe84kJkJpnn4XNDodh7/k93G7pNxQIgIwcOgQbb7MhJyaTwVrR1CTdnR0OvP/AAMjSqlXYWGezIEivvIJ1xu/HNRoarvI/dBoUYVkgnn2WaN8+eE+4zXdrK4jB2bP4grmrZlMTBtvrr+PcTZswCDlWWChgQE5O4vVKBcdzqMbhkCZYfX3S0bm5Gee0t4MgrVmDCdDRgQGcSIA5+/04N5fDfbW0SMNDqxXvwaEhlWiroKCgcPkwPQGXBeD0eqwZfX0gB+k0Qvq8IX3HO+Ad2bkTm9/OTsmJ5HyShgai557DGhAKSRWp3w/Cwtd1OHDe2bO41sgIju/sRDlzPI48TFbi1emwloyMgDTZ7aKKfvw40VNP4fXqdILFgCIsC8CPf4wvPZORrsnhMEgD17wXi2C2q1YhVNTXJ0w2EoF3Y2hIMrQ576RSwW+fT0SGamsx2F57DYlXiQRIh04nSVWBAAZ6JgO550hE6vxHRsD0+/uJNm/GZ5guCqcSbRUUFBSuDKrzWbg4Q9NAOMxm2OhyGR5xrxcby2AQnvjDh6EwG4uBmOTzUtasaSA3x49jAxsIiL6W14u/7XZcO53GGpTNYi1Ip7FOtLVhrXn9dZzX2Snemnwem2qjEZtmFqUbHobg3P79i/UfBRRhWQAyGfxww0C9XiSP2TuybRsG2JtvSlIVs9/eXnhG6uvxnF6PgcKy+IGAlJnV1CB09NprkrTV2SmhJqcTg3fFChCjW2/FZDAYQFZiMRCas2fhgTGZROqfE6amK9wqKCgoKFw+TJfsr+47tGYN1oN0GpvRmhocPzaGqk+7HZvbjRslf6VSER2VYBCv53K4rtksm1m/X3oYuVxSOeT3T91087mxmHR17ujAuZUKnudNLqu4p1LSK2mxoAjLAsD5JS4XXGmjo2C5NTWI62kavnTursy5LZEI2GptLQhJOo0vP5vFwGtsxCCx2TCIHA4MyjNnRDSouRnX5ISq2lp4TQ4dAlPmkrNQCNcgApsOh8G4iXAf7F0pl/GjEm0VFBQUrhyqE3B5s8g2euNGrCM6neQZGgwgCW9/O35XKvDYWyziPVm1CmTD4UBirccDQqLXY50IBrGmeL1YF0wmXIc3zPk8cihdLlxPp8NPXx9IECfY6vWIAgwP436DQaxT7IlZLCjCsgDwlzswgIEUDII0uN2opU+nxdtiNmNwvvmmZGWXSvi7UpFOnCtX4vxKBYPD4ZDqoXQaz/v9cCGmUmDdtbVwFR46hMe3344J4XLB85LJgKXbbCBDRBjcFovkqqhEWwUFBYUrD07AZZJS7WUxGlEJdO4c/o7HsTnlRolbt4KQNDSIfpbVis1mSwvWB00D0WDpfT6mVEKuTGcn7oFlM1gMLhCAt2V4GGuDyYQN+OQkNsvpNPJb1qzB+/T3w7NitYIgLSYUYVkAolHxlGzdKsx5ZARkIpvFF8lMNRaDp8TlEiLDvYE6OzFoOGbJ7jyuFspkQFpqajAwWeTN4UBl0NmzYMm7d0uPouZmEBVWtOUBXqlgInBlkEq0VVBQULh6qE7A1elgxzms4nRKEi5LTIRC8GysWQP7/9JLWHPa2kBsMhlseJuaYOsLBWmW63Tiubo6vFelgrVhxQqQG03DGkGE9cVmk1Jl9tJks7heTw+u0dmJatdYDCSH0wsWC4ssA3NtwGhEDyEiaUjF7jSzGd6T3l5pcGg0gikXi3jdZhPl22QSA5EHHxHcdyYTrs3JuPX1UnVULKJ82WoF677tNilH6+yEa5EIg2rzZtyXpoFB19fL50ilFr95lYKCgsJyAndwdjpBLMbHsSl1uUAusllsfqtVzScnkYCbSkFK4667sO7odAjdBINYg06cwCaUlc6dTlzb4RDtlkoFa04qhZ98Hsfb7VJdeuIEyI3djuO595zLhc34li14/8HBxf1fKg/LArB6NUhDNIovkfvulMsYAN3dUopcLOI5TYNnJBCAhyOVwmDasAGvJRIYHOvWYQAxu2WXn8uF97PZkNC7eTPRz34G4lRTA7LT2IiBXalgIHGSLRHuMxwWb4pKtFVQUFC4+piegMuiouzt4KqdTAabz5UrZeN6ww0gO+fOidaWwyHJuA0NSFXgjbPHA+9LOg2b39yMnBYu9giF8P4sHMfic62tInpKJNWwk5PwALFo6fr1V/u/NxWKsCwAsRi+TKMRBGRwEANgdFSSmZhw6HQ4hptPTU7itV27MJj43E2bcMyrr0qfiUgEZWx2OwaT1QpSsmcP0f/7fyAktbUiDMelc8PDQnKI8JirmYhAgkollWiroKCgsBiozl/hx9xDTqfDpjidhmdjbAw5JOPjICF33IHQkM8HrZZyGRtjoxHkxGbDusJKtWNjqB71ePB3Mkl0441YW7g5otWKdYtzK9NpkBm7HTkr4+MSSWhsxDVY5n8xoQjLAsDZ2rEYYnuZDIiIywW2WyqB8dpsYMuVCr5wnQ6JsR0dcLklEvjyb7kFssfnzoG4mM0YJKEQEqg4SdbpJLr7bpxbKMA7w+VvK1diQEUiGMihEO51bAyP2dNChGOCwUX4xykoKCgokMmENYITcIlgk+NxPGcyyRqTz0sVqs2G83bvJnriCaQG3HgjCIbFIr3lcjnY+aYmrCE//SnWj5078V6nT+O6d98Nr0wuh/dubAR5Yi0xsxlrjMmE16NRiNn5fEhdKBQW5d93HoqwLAAGAxhuLAaiYrdjsHCirMkEb0koBHJhMoGU3HgjqoUGBvCF33ADvDC//CUGyvbtICbnzuFaHR0i/JNKEd15JwbsK69goGWzIEvr10vCr9UKkkSE+3M4RM2WCOfYbCrRVkFBQWExMb3PEJEo2HKop7UVj5NJCf17vVhbQiGsHXfcAY9MJIJ1hAXpEgkQjPZ2pBGMjECdvbNTNFZeew3ry913I1zU2wvys3KlCM7Z7VhD3G48zmRQmdrfL1IZiwVFWBaAAwcwoKxWfJkeD9xxrJ3S3g5S0teH8M2ttyKEdOQIWDQrEh44gMFx++045/BhEBydDo8nJsCyT58GWdm4EZLIt9wC4uH1yiBOpTCY2tpwfiIBouRwyH2XShj4i12KpqCgoLDcodNJ2KYa9fUI43PeY10dyAiHhuJxvHbrrSAzIyMIDZlMsO/BIH64AunFF+EJuftuXLurS7o/NzZiLdm/H4/f9S68Z1cXCEpdHe6Jk3Ldbnhq9Hq87969V/u/NhWKsCwA3KTQ5UIOCXs2wmG41rq6kKPyzndiAL36Kr7s+nqQjGIRZdHNzUT33INSsuefx6DizHEisOKjR5GIe8stYMeBANizwwGXnteLAcw9giwWDEZNmyq1X6lgcKuqIAUFBYWlAVZB54aIRCAydXUi0tbYCFvOIqUrV+KcZBKk5bXXsA685z04x+XC6y0tON/txnrzf/8vwkW33y596Vwu/LS04JijR0GKfvu3kcZw7hxCSl6v5NfU18NLz33qFhOKsCwAdjtcdZWKuOpKJXzhoRDRBz+I415/HeSktRUDyO3GgMrlUIrc3Ez0+OOSJGuxgLTU1cFtd/o0wk/33AP3WyQC7ZVSCYNn5UoMYM6FYT2XQmFqF2YivIciKwoKCgpLC1xkwVVCRLD7tbXwYnCjW4sFYX7uFWSxYOPa0oJN8po1SDs4fRppAiYTCMXkJK7l8SCX5cQJkJtgEMm5RiOu5fFg/TpyBMfcfjsiBCMjeF+3G+87PIw1yufDxngxoQjLAlBTg9igwYCfWAxf9p49SHI6eBBfcmsrXrfb8Xt8HKThnntAZp56CqSjqQlMVtMw4GprMXgnJ1G6ZjAgxLRli4gDtbXhPaJRDJ7aWpCYdPrCcuWRkalVQgoKCgoKSwd+v1QFMUwmeDYiESS/NjSIp5yLKjQNxRf5PApAbr8d57zxBqQv1qyB7R8ZwdrBPe6+8x0IyO3YgXO5nYtejzXKYkGeysgIQknr1uEYVlkfH8ex7e1X/V81BWpJWwByuakKtDfeCAJx7hx+ampAYLgOfnISLHbHDgy8f/kXfOk33wyvTG8v8lN27cI16+owIJqbQWa487LPh0FXU4OBPTqKv+vrwbrj8QurfyIREaJTUFBQUFiaCAaxAa1Wj+U8yXgcIZj6eqwng4NYc7JZ2PYNG7BmpNMQlTOZEN4JhbCO3HsvrnfwINaMW27Bhvm555C34veDjHDzXr1e1pVDh/B4+3bRCeMGwKqs+RrA8DBySW69VaSWh4dBRrgkLBAAqbBaQTrWrkUZWl8fiEqlgmqfcFgGTCgEBnzyJM679VYMjmQSWeAWC0iQ14sQkdstyrUz5aeMj8OFV10lpKCgoKCwNBEOw6tRHWpxOCRnJRDAOpFIwFPS0gIy4/eDaHDvoY4OyV259VaQizvvxKZ5bAwFH+vWwcvy8MMgKzfcgGtkMsil5ArTYBBEaGAABGbXLhCkYhEb9MWETtMWOyp1eZBKpcjj8VAymSR3dfbpZcCf/RkGy7lzIBBOJwYUZ31PToLFckfkAwcwALnr5alTGAzbt2OAVio4fv9+kJxiEceuXo2B6fXCtdfXB+LT2wsG3dCAQTk0BOJSXao8MQGmvthlZwoKCgoKC0elAtJS3UaFCBtQkwmEZGAAXpaVK0WALpPB2lJXh+defhnrSiSCtcZmw3piNkPe/9w5bKbdblx7cBAkJhDA+jE0hLUtlcKaRoS1KZEAsWlpwWb7rrsu//9goeu36iW0AJw+DZbKDae4wzLnqmzZgtdPnQL7bWvDIEkk4IlZvRpMl/sHTUxAn6W5GQOS6+nLZVy3sREDmPNWiDCoWCmXm1sxJifhmWHCpKCgoKBwbYA99NW5KkQgCZw7GQphfejuBmnp7sb6kUhg/WhokG7PGzdik1soSLHIO9+JDfCzz2JNWb8eIaehISTcdnTgPNYaMxqlnUBzM+7j9deRt7mYUIRlAfB4wEojEbBWu126KSeTyLIeGwNDXrcOA+voUQy4D3wAxOPoUQyCWAwDtLMT5CcclqaJLKlvs2GwlUoYkE1NkkgVDGIAM7ihItfPKygoKChcW2CF2ek935jI+HxSnXr2LEjEwIDod6VSWHt6enCdSkVCOIEA1oiGBqKPfASyG/v2Ye1pbcU1e3qQdtDaivDP2JhUKSWTWJO4R9FiQuWwLAC5HAaNzQYmunUrBsWJEyArk5PwoHi9GCBHjkDY50/+BIPmwAF8+ZGI6Kp4vQgTDQ8jiTcexzEsuR8IYGA2NYmQ0PRk2koFA0uRFQUFBYVrG3a7iMFVIxSCh8Nuxxpgt2M94M7KnCxrMmETHY2Kdgon6pZKWMO4fPljH8MG+uBB6Qzd3g7i8vrr2DC3t4ME+Xx4fObMVK2vxYDysCwAFgvCOh0dcLWdOQOmmUigF1ClIs9v2kT0B3+AQfPii/CcaBoGTVubdNns64OXZeVK9GrgnhDc1bmnB2zX78cAZrlkhqaB7EyPeyooKCgoXJtgwbhMZqpqeTiM8A175IeGQF5SKWxqR0dBSoJBrCO/+pWQCxY4jcWwnrzxBsjKhz+Mteepp5Bq0NpKdNNNKAI5cwZEplwGaSmVoMy+2L2EVNLtAvDII/CapFJgmydPIs8kHMYX3dsLj8t99+GLHRwEuyUS0R+DAQPIYsF1du7EoCwWMUDNZmRwc/08twHX6fAz/SMND4MMGRXlVFBQULiuEInIesGoVETEbXQUuZW1tdIs99AhrEkmE9aOM2fEMxOLYZNbLIK82GzYdHu9WMuefRZFIDU18KyYTPC0NDbi+pkMNu3vex/ax1xuLHT9ViGhBeDoUeSxlEpIdtq8GQTlwAHE/e68E19kJCINCE0mkAmDAYMjFJLnt24FadHpQFTSaWn9XSiI249bf0///iIRMGVFVhQUFBSuP9TWSidnhl4vZMXvh3eeVWkdDpCVchlrTCaDa6xYAU9JRwfWLN4AG41YY9JpSeT96EdFQG5oCJIbOh28/Y2NIEsDA4v2L8H/YHHf/tqA1Qr26XQiIam/H1U+bW1Ev/mbGCzZLCp1PB48ZrXC+nqUJmsaiAuXNZvNGFxjYxgsLIFsNEq/h3z+Qsn9eFy6RSsoKCgoXJ/gTs7VMRCDAfmNiQTWmZUrkTIQiSARl7sr6/U41myGR2RsDPktXMAxMQEi09CA66bTeHz77fiJxYiOH8eat3YtQkdDQ1h7FhOKsCwAySTigqypQoSQztq1GBT5PF5bvRpsdWIC+SmNjTjm+HGR07dYwJojEbjn1q3DoDlxAtdtbARJmZi4sEw5lcL7Vcc2FRQUFBSuT3DuSjXMZmyMCwWsJ21t8IJwUUhtLQjK5CS8LWYz1q/hYRy/fj020vX12HgbDCAyySSuGQyifLmhAYUfsRiu63BMbdq4GFCEZQEIBuHZ4ByWHTvwBWoa2OyqVfhSu7qgHhgMwp1mMCBRafNmIRmJBM5htuvz4dojIyA3DgcGTnU9PhE8OMUiBqqCgoKCwvUPvV4kLarB8hpGo5Qc79sHEuLzgaBYLDgvl8Pf7e1Yk954A+q1gQA21jYb0ht4s5xKgejccAPIDRHyMp1OeP4XE4qwLAC5HJhnRwfRHXfgS+euzTYbJPfb20FCgkF80fv2wZOybh0GVTqNBCiXC8cGg/C6ZLOoJtq1S8R6pkvuFwrSx0hBQUFBYfmAmyKywi2DJfxtNqkW3b8fx9bV4YcrU4eGpASaq4hcLqLdu0FEtm9H5WpvL4iL0YjIQUcHjjGbRZV9MaHSNheAYhGSxBMTIC9mMwbLmTP40js7kedy88340p9/HoOipgaeF87G5n4PbjcG36uvwnW3fTuSm/L5C8lKuSx19QoKCgoKyw9WqwiJVrdf4TJogwEb5Zdfxhq0aRO8LrypjsVwbj4vbWKOH0dqwrZt2IBnsyAqJ07Aw2824z3KZeiKnTq1+MJxqqx5AXjiCcQDJycxcHI5fPmhEFxtmzbhyz11Cs9v3oywTzqN4z0exBU9HmRZ798PttvZibyXsTG8T13dVBVbZsbT+wYpKCgoKCw/JBIgFU7n1OejUWys3W6sU6++imNXrsQ6YzKhf9DAANYllwvrUX8/wkYbN4LcvPEGSAxXrIbDIERuNwjTrbfCa3O5oXoJXUaUSmCfPh++YJsNIZ3mZhCOeBxhoWAQIaDxcbBSlwvuNZcL2i0/+QkGyc03YwBMTOBcTQP5qSYrRFJzr8iKgoKCggKHhozGqUKiLOHPHpCbbkKOS1cX0ZNPSu7l2rXYII+OYn1xubCZ7uqCR2bdOpCVY8dwrf5+Kf7I56/6x70AysOyADzzDCT3uWtlbS2SkRwOCMpFIiK2wyVlbW14ff9+JCw1N6NJYi6Ha+r1ICqaBhJTPfiIMKi8XnHLKSgoKCgoEMErUlMztVULEdaiSgWbXF7ZTSaEhA4cwHM7d2LN6esDObFYQICGhrA+rVuHa3MpcyIBb0tTE9rINDVd/s+jPCyXEWfO4ItuaEAeypo18JgcP44vcsUKeGGSSXyZVivyWCoVfPnr1mEAJRKiSmixzN6XIRaDy0+RFQUFBQWF6airw0Y4HMbml1Fbi9+FAtYbIkQH7Hait70NXpJDh+Cl2bABIaOeHhCV+nqsPadOYbO9aRM22keOIGpw7hzCS4sJRVgWgGAQDHTHDnyxr70GglIuozJofByeF4uF6Lnn4GbjBonsotPpEPaZ7kmZjmQSjHixBXoUFBQUFJYuwmGEdVj8rRpmM9YtImycEwnkuJTLyFcxm7Hh/ulP4U3p7ET4x+nEOhaNQuHdbocmy9Gj0Bi7JsuaH3roIWprayOr1Urbtm2jF154Yc7jn3vuOdq2bRtZrVZqb2+nhx9++IJjHn/8cVq7di1ZLBZau3Yt/ehHP7qUW7si2LwZ6n/Hj0toyGbDl5dMwq124ABKwt7+doSLnE4Qj/Z2sOFgcH6ykslgQC12R0wFBQUFhaUNvR6b4OHh+Y/z+3FsWxv+NhjQ7PCWW7A+vfAC1q9CAetQayvCS5OTRC+9hA35O98pPfIWCxdNWB577DH65Cc/SZ/73Oeoq6uLdu/eTffccw/19fXNePzZs2fp3nvvpd27d1NXVxd99rOfpU984hP0+OOPnz9m3759dN9999H9999Phw8fpvvvv58+8IEP0Kuvvnrpn+wyIp1GLgoRkpVqa+E6O3YMPzYbdFRuuAFfbGcn3GuBwIWJtLMhn8dA8fuv3OdQUFBQULh+YDRizYlEFn6O2w3y0tGBkE9LCwpBNmxAOOjcOXhUuD1MLgdSdOjQ4qcpXHTS7Y4dO2jr1q30jW984/xznZ2d9N73vpe++MUvXnD8pz/9aXryySfp+PHj55974IEH6PDhw7Rv3z4iIrrvvvsolUrRT3/60/PH3H333eTz+eh73/vegu7rSibdvvYaSMvEBOKGAwNIiN29G+64QOCthXC4p9B0DRYFBQUFBYX5kMnAOzK999zFoFzGRjwaxZrX14fnWLaDGy5ynszlxBVJui0UCnTgwAH6zGc+M+X5PXv20MsvvzzjOfv27aM9e/ZMee6uu+6iRx55hIrFIplMJtq3bx996lOfuuCYr371q7PeSz6fp3xVnVXqCjY5mJwULZbt24l+//dRrjw9Q3shqFSkOoj/VsJwCgoKCgqXCocDeZXj4/ibuzLr9fL3fDAYkLoQDCJKEI8jsvCLX2CNuvlmtKFZTFwUYYlGo1Qulyk0rdFNKBSikenNDv4bIyMjMx5fKpUoGo1SOBye9ZjZrklE9MUvfpH+9m//9mJu/5Lx7W8jh+WuuyQje3x8YedWl5fxwKkeTHo9PCtKa0VBQUFB4VLh8aAiaHJSNsPVG+TpqF6bZsOWLfgZHSX62tfgXfn1X78y978QXFKVkG7a6qpp2gXPzXf89Ocv9pp/8Rd/QQ8++OD5x6lUipquRIE4EX3rW1fksgoKCgoKCpcNV6q6NBgk+uY3r8y1LwYXRVgCgQAZDIYLPB9jY2MXeEgYdXV1Mx5vNBqp5r+7+c12zGzXJCKyWCxksVgu5vYVFBQUFBQUrlFcVJWQ2Wymbdu20dNPPz3l+aeffpp27do14zk7d+684Phf/OIXtH37djL9dxLIbMfMdk0FBQUFBQWF5YWLDgk9+OCDdP/999P27dtp586d9K//+q/U19dHDzzwABEhVDM4OEjf/e53iQgVQV//+tfpwQcfpN///d+nffv20SOPPDKl+udP//RP6dZbb6W/+7u/o/e85z30X//1X/TMM8/Qiy++eJk+poKCgoKCgsK1jIsmLPfddx/FYjH6/Oc/T8PDw7R+/Xp66qmnqKWlhYiIhoeHp2iytLW10VNPPUWf+tSn6J//+Z+pvr6evva1r9H73//+88fs2rWLvv/979Nf/uVf0l/91V9RR0cHPfbYY7Rjx47L8BEVFBQUFBQUrnWo5ocKCgoKCgoKi4aFrt+XJM2voKCgoKCgoHA1oQiLgoKCgoKCwpKHIiwKCgoKCgoKSx6KsCgoKCgoKCgseSjCoqCgoKCgoLDkoQiLgoKCgoKCwpKHIiwKCgoKCgoKSx6KsCgoKCgoKCgseSjCoqCgoKCgoLDkcdHS/EsVLNibSqUW+U4UFBQUFBQUFgpet+cT3r9uCMvExAQRETU1NS3ynSgoKCgoKChcLCYmJsjj8cz6+nXTS6hSqdDQ0BC5XC7S6XSX7bqpVIqampqov79/WfQoWk6fV33W6xfL6fOqz3r9Yrl8Xk3TaGJigurr60mvnz1T5brxsOj1empsbLxi13e73df1gJmO5fR51We9frGcPq/6rNcvlsPnncuzwlBJtwoKCgoKCgpLHoqwKCgoKCgoKCx5KMIyDywWC/31X/81WSyWxb6Vq4Ll9HnVZ71+sZw+r/qs1y+W2+edD9dN0q2CgoKCgoLC9QvlYVFQUFBQUFBY8lCERUFBQUFBQWHJQxEWBQUFBQUFhSUPRVgUFBQUFBQUljwUYSGihx56iNra2shqtdK2bdvohRdemPP45557jrZt20ZWq5Xa29vp4Ycfvkp3+tbwxS9+kW644QZyuVwUDAbpve99L508eXLOc/bu3Us6ne6CnxMnTlylu740/M3f/M0F91xXVzfnOdfq99ra2jrjd/RHf/RHMx5/rX2nzz//PL3rXe+i+vp60ul09OMf/3jK65qm0d/8zd9QfX092Ww2uv322+nNN9+c97qPP/44rV27liwWC61du5Z+9KMfXaFPsHDM9VmLxSJ9+tOfpg0bNpDD4aD6+nr60Ic+RENDQ3Ne89vf/vaM33cul7vCn2ZuzPe9fuQjH7ngnm+66aZ5r7sUv1ei+T/vTN+RTqejv//7v5/1mkv1u71SWPaE5bHHHqNPfvKT9LnPfY66urpo9+7ddM8991BfX9+Mx589e5buvfde2r17N3V1ddFnP/tZ+sQnPkGPP/74Vb7zi8dzzz1Hf/RHf0SvvPIKPf3001QqlWjPnj2UyWTmPffkyZM0PDx8/mflypVX4Y7fGtatWzflno8cOTLrsdfy9/r6669P+ZxPP/00ERH95m/+5pznXSvfaSaToU2bNtHXv/71GV//8pe/TP/wD/9AX//61+n111+nuro6uvPOO8/3F5sJ+/bto/vuu4/uv/9+Onz4MN1///30gQ98gF599dUr9TEWhLk+azabpYMHD9Jf/dVf0cGDB+mJJ56gU6dO0bvf/e55r+t2u6d818PDw2S1Wq/ER1gw5vteiYjuvvvuKff81FNPzXnNpfq9Es3/ead/P48++ijpdDp6//vfP+d1l+J3e8WgLXPceOON2gMPPDDluTVr1mif+cxnZjz+f/7P/6mtWbNmynN/8Ad/oN10001X7B6vFMbGxjQi0p577rlZj3n22Wc1ItLGx8ev3o1dBvz1X/+1tmnTpgUffz19r3/6p3+qdXR0aJVKZcbXr9XvVNM0jYi0H/3oR+cfVyoVra6uTvvSl750/rlcLqd5PB7t4YcfnvU6H/jAB7S77757ynN33XWX9sEPfvCy3/OlYvpnnQmvvfaaRkRab2/vrMd861vf0jwez+W9ucuMmT7rhz/8Ye0973nPRV3nWvheNW1h3+173vMe7e1vf/ucx1wL3+3lxLL2sBQKBTpw4ADt2bNnyvN79uyhl19+ecZz9u3bd8Hxd911F+3fv5+KxeIVu9crgWQySUREfr9/3mO3bNlC4XCY7rjjDnr22Wev9K1dFpw+fZrq6+upra2NPvjBD9KZM2dmPfZ6+V4LhQL9+7//O330ox+dtwnotfidTsfZs2dpZGRkyndnsVjotttum3UOE83+fc91zlJEMpkknU5HXq93zuPS6TS1tLRQY2MjvfOd76Surq6rc4NvEXv37qVgMEirVq2i3//936exsbE5j79evtfR0VH6yU9+Qh/72MfmPfZa/W4vBcuasESjUSqXyxQKhaY8HwqFaGRkZMZzRkZGZjy+VCpRNBq9Yvd6uaFpGj344IN0yy230Pr162c9LhwO07/+67/S448/Tk888QStXr2a7rjjDnr++eev4t1ePHbs2EHf/e536ec//zl985vfpJGREdq1axfFYrEZj79evtcf//jHlEgk6CMf+cisx1yr3+lM4Hl6MXOYz7vYc5YacrkcfeYzn6Hf/u3fnrMx3po1a+jb3/42Pfnkk/S9732PrFYr3XzzzXT69OmreLcXj3vuuYf+4z/+g371q1/R//k//4def/11evvb3075fH7Wc66H75WI6Dvf+Q65XC563/veN+dx1+p3e6m4bro1vxVM34lqmjbn7nSm42d6finjj//4j+mNN96gF198cc7jVq9eTatXrz7/eOfOndTf309f+cpX6NZbb73St3nJuOeee87/vWHDBtq5cyd1dHTQd77zHXrwwQdnPOd6+F4feeQRuueee6i+vn7WY67V73QuXOwcvtRzlgqKxSJ98IMfpEqlQg899NCcx950001TklVvvvlm2rp1K/3TP/0Tfe1rX7vSt3rJuO+++87/vX79etq+fTu1tLTQT37ykzkX8mv5e2U8+uij9Du/8zvz5qJcq9/tpWJZe1gCgQAZDIYL2PfY2NgFLJ1RV1c34/FGo5Fqamqu2L1eTvzJn/wJPfnkk/Tss89SY2PjRZ9/0003XXMM3uFw0IYNG2a97+vhe+3t7aVnnnmGPv7xj1/0udfid0pE5yu/LmYO83kXe85SQbFYpA984AN09uxZevrpp+f0rswEvV5PN9xwwzX3fYfDYWppaZnzvq/l75Xxwgsv0MmTJy9pHl+r3+1CsawJi9lspm3btp2vqmA8/fTTtGvXrhnP2blz5wXH/+IXv6Dt27eTyWS6Yvd6OaBpGv3xH/8xPfHEE/SrX/2K2traLuk6XV1dFA6HL/PdXVnk83k6fvz4rPd9LX+vjG9961sUDAbp137t1y763GvxOyUiamtro7q6uinfXaFQoOeee27WOUw0+/c91zlLAUxWTp8+Tc8888wlkWlN0+jQoUPX3Pcdi8Wov79/zvu+Vr/XajzyyCO0bds22rRp00Wfe61+twvGYmX7LhV8//vf10wmk/bII49ox44d0z75yU9qDodDO3funKZpmvaZz3xGu//++88ff+bMGc1ut2uf+tSntGPHjmmPPPKIZjKZtB/+8IeL9REWjP/xP/6H5vF4tL1792rDw8Pnf7LZ7Pljpn/ef/zHf9R+9KMfaadOndKOHj2qfeYzn9GISHv88ccX4yMsGH/2Z3+m7d27Vztz5oz2yiuvaO985zs1l8t1XX6vmqZp5XJZa25u1j796U9f8Nq1/p1OTExoXV1dWldXl0ZE2j/8wz9oXV1d5ytjvvSlL2kej0d74okntCNHjmi/9Vu/pYXDYS2VSp2/xv333z+l8u+ll17SDAaD9qUvfUk7fvy49qUvfUkzGo3aK6+8ctU/XzXm+qzFYlF797vfrTU2NmqHDh2aMofz+fz5a0z/rH/zN3+j/exnP9N6enq0rq4u7fd+7/c0o9Govfrqq4vxEc9jrs86MTGh/dmf/Zn28ssva2fPntWeffZZbefOnVpDQ8M1+b1q2vzjWNM0LZlMana7XfvGN74x4zWule/2SmHZExZN07R//ud/1lpaWjSz2axt3bp1Spnvhz/8Ye22226bcvzevXu1LVu2aGazWWttbZ11cC01ENGMP9/61rfOHzP98/7d3/2d1tHRoVmtVs3n82m33HKL9pOf/OTq3/xF4r777tPC4bBmMpm0+vp67X3ve5/25ptvnn/9evpeNU3Tfv7zn2tEpJ08efKC167175TLsKf/fPjDH9Y0DaXNf/3Xf63V1dVpFotFu/XWW7UjR45MucZtt912/njGD37wA2316tWayWTS1qxZsyQI21yf9ezZs7PO4Wefffb8NaZ/1k9+8pNac3OzZjabtdraWm3Pnj3ayy+/fPU/3DTM9Vmz2ay2Z88erba2VjOZTFpzc7P24Q9/WOvr65tyjWvle9W0+cexpmnav/zLv2g2m01LJBIzXuNa+W6vFHSa9t+ZhQoKCgoKCgoKSxTLOodFQUFBQUFB4dqAIiwKCgoKCgoKSx6KsCgoKCgoKCgseSjCoqCgoKCgoLDkoQiLgoKCgoKCwpKHIiwKCgoKCgoKSx6KsCgoKCgoKCgseSjCoqCgoKCgoLDkoQiLgoKCgoKCwpKHIiwKCgoKCgoKSx6KsCgoKCgoKCgseSjCoqCgoKCgoLDk8f8Dtn9/hcC1X/gAAAAASUVORK5CYII=",
      "text/plain": [
       "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "\n", "plt.plot(reloaded_results['MaxMuscleAct'].T, 'b', lw=0.2, alpha = 0.3);" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.14.0" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "0b2227b291cb40f4b79fc8a76140be38": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_bfe059d47eb34f609088ec7bcf5254a2", "outputs": [ { "data": { "text/html": "
Processing tasks ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1/1 0:00:08 0:00:00\n
\n", "text/plain": "Processing tasks \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m 1/1 \u001b[33m0:00:08\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "1772fcab5a4d4896bf088091c9f8f64f": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_a58452dfc1144755a22fc86af91479b4", "outputs": [ { "data": { "text/html": "
Processing tasks ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1/1 0:00:07 0:00:00\n
\n", "text/plain": "Processing tasks \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m 1/1 \u001b[33m0:00:07\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "198bbf99d10a4d328e78cadc8cd73256": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "4b68504ed0c14493b9c5ecae1bdd85a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "7dfca2c236c7437eb60b4e885fa8db19": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "a58452dfc1144755a22fc86af91479b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "afe053c8db894e81ad6eea4ff8158e22": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_4b68504ed0c14493b9c5ecae1bdd85a6", "outputs": [ { "data": { "text/html": "
Processing tasks ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━━ 15/20 0:01:40 0:00:33\n
\n", "text/plain": "Processing tasks \u001b[38;2;249;38;114m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[38;5;237m╺\u001b[0m\u001b[38;5;237m━━━━━━━━━\u001b[0m 15/20 \u001b[33m0:01:40\u001b[0m \u001b[36m0:00:33\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "b649e3d64e8f44ee99d2c35c49055432": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_7dfca2c236c7437eb60b4e885fa8db19", "outputs": [ { "data": { "text/html": "
Processing tasks ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 20/20 0:00:40 0:00:00\n
\n", "text/plain": "Processing tasks \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m 20/20 \u001b[33m0:00:40\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "bfe059d47eb34f609088ec7bcf5254a2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "c3312153e3464082b56ee56246167b43": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_198bbf99d10a4d328e78cadc8cd73256", "outputs": [ { "data": { "text/html": "
Processing tasks ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1/1 0:00:00 0:00:00\n
\n", "text/plain": "Processing tasks \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m 1/1 \u001b[33m0:00:00\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 }